Gibraltar Office Building Design Report

13.001 April 3rd, 2013

Prepared By:

PREMIER ENGINEERING CONSULTANTS

Gibraltar Office Building Design Report

Prepared For: Mr. Jamie Anstey and Mr. Mervin Morris DBA Consulting Engineers Limited

Prepared By: Aaron Shaffer, Ashley Hobbs Jean Gibbons, and Sabrina Ishita Premier Engineering Consultants, Group I Memorial University of Newfoundland

Engineering 8700: Civil Design Project

April 3rd, 2013

April 3rd, 2013

Mr. Anstey and Mr. Morris DBA Consulting Engineers Limited 1243 Kenmount Road, Suite 302 P.O. Box 8188 St. John's, NL, A1B 3N4

Subject: Gibraltar Office Building Final Design Report

Dear Mr. Anstey and Mr. Morris:

Please see the enclosed Final Design Report for the engineering design of the Gibraltar Office Building. This design report is a requirement of Engineering 8700 and has been compiled to express the design that Premier Engineering has completed.

The enclosed final design report outlines the loading factors used and the final structural design and specifications of the Gibraltar Office building. This includes design drawings of foundation design, joist system, beams, columns, lateral bracing, and decking. Upon completion of the design a Class-B (pre-tender) estimate was completed for a total of \$446,341.99.

If you have any questions regarding this final design report, or any other matter pertaining to this project, Premier Engineering would be please to discuss them with you.

Sincerely,

Aaron Shaffer, Project Manager, Premier Engineering Consultants

Enclosures: Gibraltar Office Building Design Report Gibraltar Office Building Appendices Gibraltar Office Building Presentation and Cue Cards Gibraltar Office Building Files CD

cc: Dr. S. Bruneau Dr. A. Hussein J. Skinner

Executive Summary

Premier Engineering Consultants was contracted to complete the structural design, quantity takeoff, and structural drawings of the Gibraltar Office Building in St. John's, Newfoundland for DBA Consulting Engineers Limited. The project consisted of a twostorey (three levels) office building whose main structure was designed using steel and wood framing with concrete foundations. CANAM designed decking and open-web steel joists supported on steel beams and columns make up the floor and roof systems within the building. A common area on the second floor was designed using wood decking and glulam beams supported on steel beams and columns.

Load cases resulting from wind, snow, structural self weight (dead load), and human occupancy (live load) were all taken into consideration in the design of all structural aspects of the building. The site soil conditions also had to be taken into account which provided design criteria for the foundations.

The upper roof uses decking and joists made of both wood and steel, steels beams, and steel columns to resist vertical loading. The roof uses diaphragm action to resist lateral loading.

The second floor design is composed of composite decking, steel joists, steel beams, and steel columns to transfer the loads from the second floor and the loads from the above level. The second floor also uses diaphragm action and cross bracing to resist the lateral loading.

The main floor which is referred to as the first floor, also uses composite decking, steel joists, steel beams, and steel columns to transfer the loads on that floor and the loads from the two levels above. The main floor also has an area with a concrete slab, strip footings, pedestals, and spread footings. The main floor uses cross bracing and moment connections to resist the lateral loading.

The basement uses a concrete slab with steel columns, pedestals, spread footings, foundation walls, and strip footings to transfer all of the office building's loads to the underlying soils. Since the east side of the building is exposed to lateral loading, there is also cross bracing used in the basement to resist this loading.

From the design selections a set of working structural drawings were developed. These drawings include important design notes which listed detailing design codes, design requirements, connection design details, and other critical design information. Other drawings include framing plans for the foundation, first floor, second floor, and roof, structural elevation drawings, cross-sectional views, and structural details.

Upon completion of the drawings, a quantity takeoff and cost estimate of the structural design was completed. The quantity takeoff was broken down into four sections; concrete, steel, wood, and decking. Each unit price included the cost of labour, delivery and miscellaneous supplies. There was a five percent wastage added to every subsection for material wastage on site and for any quantities that were missed. The subtotal of all four sections was three-hundred ninety-five thousand dollars. Adding thirteen percent harmonized sales tax to this, the total cost of this project is four-hundred forty-six thousand dollars.

PREMIER ENGINEERING CONSULTANTS

Table of Contents

1.	Acknowledgements1			
2.	Project Description			
3.	Project Requirements 4			
4.	Loading Cases			
	4.1 Wind Loads			
	4.2 Snow Loads			
	4.3 Dead Loads			
	4.4 Live Loads			
5.	Geotechnical Information10			
6.	Design Analysis and Specifications11			
	6.1 Structural Framing11			
	6.1.1 Structural Framing Plan11			
	6.1.2 Load Transfer Sketch			
	6.2 Decking			
	6.2.1 Steel Decking			
	6.2.2 Composite Decking			
	6.2.3 Wood Decking14			
	6.2.4 Cross Laminated Timber Paneling14			
	6.3 Joist System15			
	6.3.1 Open Web Steel Joists16			
	6.3.2 Glulam Beams			
	6.4 Beams			
	6.4.1 Steel Beams19			
	6.4.2 Steel Channels20			
	6.5 Columns			
	6.5.1 Steel Columns			
	6.5.2 Column Base Plates23			
	6.6 Lateral Bracing23			

PREMIER ENGINEERING CONSULTANTS

	6.6.1	Cross Bracing	24
	6.6.2	Moment Connections	25
	6.6.3	Diaphragm System	26
	6.7 C	oncrete Foundations	
	6.7.1	Pedestals	
	6.7.2	Spread Footings	29
	6.7.3	Foundation Walls	
	6.7.4	Strip Footings	
7.	Draw	ings	
8.	Quan	tity Takeoff	35
9.	Concl	usions	
10.	Refer	ences	
Ap	pendix	A: Load Calculations	
	A.1: W	Vind Loads	A2
	A.2: S	now Loads	A10
	A.3: I	Dead Loads	A20
Ap	pendix	B: Design Calculations	B1
	B.1: D	Decking and Joists	B2
	B.2: E	Beams and Channels	B25
	B.3: C	Columns and Base Plates	B81
	B.4: C	Cross Bracing, Moment Connections, and Diaphragms	B93
	B.5: P	edestals	B110
	B.6: S	pread Footings	B118
	B.7: F	oundation Wall	B138
	B.8: S	trip Footing	B151
Ap	pendix	C: Unfactored Load Transfer Sketches	C1
	C .1: U	Infactored Load Transfer Sketches	C2
Ap	pendix	D: Load Transfer Summary Tables	D1
	D.1: U	Infactored Load Transfer Summary Table	D2

D.2: Factored Load Transfer Summary Table	D5
Appendix E: Structural Drawings	E1
E.1: WS-1.01 General Notes	E2
E.2: WS-2.01 to WS-2.04 Framing Plans	E4
E.3: WS-5.01 to WS-5.07 Structural Elevations and Cross Sections	Е9
E.4: WS-6.01 to WS-6.03 Structural Details	E17
Appendix F: Quantity Takeoff	F1
F.1: Quantity Takeoff	F2

List of Figures:

Figure 1: Proposed Building Site	2
Figure 2: East Side of Architectural Rendering for Proposed Building	3
Figure 3: Lateral Wind Load on Building From South Elevation	6
Figure 4: Snow Loads on Building From West Elevation	8
Figure 5: Steel Decking	12
Figure 6: Composite Deck	13
Figure 7: Wooden Decking	14
Figure 8: CLT Paneling Application	15
Figure 9: Open Web Steel Joists	16
Figure 10: Typical Interior Column and Tie Joists Detail	17
Figure 11: Glulam Beams	18
Figure 12: Typical Beam to Beam Connection Detail	19
Figure 13: Cantilevered Window Framing Detail	21
Figure 14: Typical Beam to Column Details	22
Figure 15: Typical Column-Base Plate-Pedestal Connection Detail	23
Figure 16: Typical HSS 'V' Bracing in Window Bay	24
Figure 17: Moment Connection Details	25
Figure 18: Steel deck Showing Diaphragm Fastening Pattern	26
Figure 19: Typical Steel Deck Diaphragm	27
Figure 20: Typical Spread Footing with Pedestal	28
Figure 21: Typical Foundation Wall on a Strip Footing	30

List of Tables:

Table 1: Summary of Wind Loads	6
Table 2: Summary of Snow Loads	7
Table 3: Summary of Steel Decking Requirements:	12
Table 4: Summary of Composite Decking Requirements	13
Table 5: Summary of Preliminary Joist Selection	17
Table 6: Summary of Beam Design	20
Table 7: Summary of Channel Design	20
Table 8: Summary of Column Design	22
Table 9: Summary of Column Base Plate Design	23
Table 10: Summary of Cross Bracing Design	25
Table 11: Summary of Moment Connections	26
Table 12: Summary of Pedestal Design	27
Table 13: Summary of Pedestal Design	29
Table 14: Summary of Spread Footing Design	30
Table 15: Summary of Foundation Wall Design	31
Table 16: Summary of Stripping Footing Design	32

1. Acknowledgements

Premier Engineering Consultants acknowledge and express gratitude to the following persons who have assisted in the completion of the Gibraltar Office Building design:

- Mr. Jamie Anstey and Mr. Mervin Morris of DBA Consulting Engineers Limited for their provision of information and guidance throughout the project;
- Mr. Justin Skinner for his provision of course information and clarification of requirements;
- Dr. Amgad Hussein for his assistance in designing the structural elements of the building; and
- Dr. Stephen Bruneau for his assistance with load calculations.

2. Project Description

Premier Engineering Consultants (Premier from here on in) have been contracted to complete the structural design, quantity takeoff, and structural drawings of an office building in St. John's, Newfoundland for DBA Consulting Engineers Limited (DBA from here on in). Although the location has yet to be finalized, the proposed site is on the corner of Airport Place and Airport Road as pictured in Figure 1, and we will be using geotechnical information from a building across the street.

Figure 1: Proposed Building Site

The project consists of a two-storey (three levels) office building with an attached garage structure as pictured in Figure 2. The main structure was designed using steel framing with concrete foundations. CANAM designed steel decking and open-web steel joists supported on steel beams and columns makes up the floor and roof systems within the building. A common area on the second floor was designed using wood decking and glulam beams supported on steel beams and columns.

Premier Engineering Consultants Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, NL, A1B 3X5 PremierEngineering@live.ca

Figure 2: East Side of Architectural Rendering for Proposed Building

The building has two levels of flat roofing. The upper level of the building is at a constant elevation even though it appears to be two levels as a parapet is located around the perimeter of the roof. The upper roof section without the parapet (which is over the foyers and garage) is supported on glulam beams acting as joists. The remaining upper and lower roofs use steel decking supported on open web steel joists. This structural building system supports each roofing system which transfers the loads to steel columns that extend from the second floor all the way to the basement into the concrete foundations. The foundations consist of pedestals, spread footings, strip footings, and foundation walls all of which were designed to accommodate the loads applied by the superstructure and distribute it to the underlying soil.

The office building also has a cantilever window portion that wraps around the southwest corner of the building and a cantilever canopy roof portion which required special design considerations. To accommodate the cantilever windows, two levels of cantilevered channels were extended from the beams with channels around the perimeter to provide stability.

3. Project Requirements

DBA contracted Premier to complete the structural design, quantity takeoff, and structural drawings for the Gibraltar Office Building in St. John's, Newfoundland. The following components were required in the completion of the design:

- Development of Structural Framing Plan;
- Calculation of Loads;
- Design of Roof System;
- Design of Structural Wood;
- Design of Structural Steel;
- Foundation Design;
- Drafting;
- Quantity Takeoff;
- Final Report; and
- Final Presentation.

All components of the project were completed accurately, according to schedule, and with professional integrity. Other important factors such as economics, environment, and safety were also considered in the design of the building structure.

4. Loading Cases

Loading caused by climatic conditions vary by geographic location and are influenced by factors such as elevation, wind direction, and proximity to water. Wind and snow loads were the only environmental loading conditions which were taken into consideration during the design of the Gibraltar Office Building. Earthquake loading was originally in the scope of the project, but due to time constraints, it was removed.

Since the Gibraltar Office Building is an office structure which will have a low human occupancy and will not be used as a post disaster structure, the importance factor used in the calculation of wind and snow loads was normal importance.

Non-climatic loading, including dead and live loads, vary by floor and section of the Gibraltar Office Building due to expected use of the building and materials used in the building. The worst case loading conditions were used for this design which included:

- 1.25Dead Load + 1.5Live Load;
- 1.25Dead Load + 1.5Snow Load; and
- 0.9Dead Load + 1.4Wind Load.

All design loading calculations are attached in Appendix A.

4.1 Wind Loads

Since the location for the building is not yet finalized, Premier used conservative assumptions while calculating wind loads. Wind loads were calculated using the National Building Code of Canada 2010 (NBC), Commentary I, using the equation:

$$p = I_w q_{\frac{1}{50}} C_e C_p C_g$$

Where:

The 1-in-50 year velocity pressure is based on historical wind data, and it was selected from the NBC's Division B, Appendix C, Table C-2. The area used was St. John's,

Newfoundland. The exposure factor was calculated using NBC's Clause 4.1.7.1(4). The exposure factor equation for open terrain used, as this yields a conservative value. The external pressure coefficients were chosen from NBC's Commentary I, Figure I-7.

The primary structural action was calculated on the exterior walls of the office building. The lateral bracing system was designed using primary structural action loads; however wind loads were also considered when designing beams for the roof sections. Uplift or suction, caused by the wind forces, counteract the factored and service loads imposed on the beams. The external pressure coefficients used for the uplift were calculated using the NBC's Commentary I, Figure I-10. The calculated wind load values for the office building are summarized in Table 1 below and illustrated in Figure 3.

Table 1. Summary of which Loads						
Latera	l Loads	Uplift				
Interior Exterior		Lower Upper				
Frame (kPa)	Frame (kPa)	Roof (kPa)	Roof (kPa)			
1.04	1.56	1.86	2.02			

Table 1: Summary of Wind Loads

Figure 3: Lateral Wind Load on Building From South Elevation

4.2 Snow Loads

Balanced snow loads were calculated on both the upper and lower roof levels. Additional loads caused by drifting around the parapet and roof level changes were calculated and worst-case loading was selected as summarized in Table 2. Snow loads for the Gibraltar Office Building were calculated using the NBC, Commentary G, using the equation:

$$S = I_s[S_s(C_bC_wC_sC_a) + S_r]$$

Where:

Both the 1-in-50 year ground snow load and 1-in-50 year rain load associate with snow are based on historical precipitation data, and it was selected from the NBC's Division B, Appendix C, Table C-2. Calculations showed that both the upper and lower roofs are small; therefore the basic snow load factor was 0.8. The wind exposure factor was determined using the NBC's Clause 4.1.7.1.(5)(a) and the building being sheltered. The slope factor was determined using the NBC's Clause 4.1.6 and since both the upper and lower roofs are flat, the slope and shape factors used were 1. The calculated snow load values for the office building are summarized in Table 2 below and illustrated in Figure 4.

Table 2:	Summary	of Snow	Loads
----------	---------	---------	-------

Upper Roof		Lower	Roof	Cantilever Window Bays		
Balanced	Maximum	Balanced	Maximum	Balanced	Maximum	
Snow Load	Snow Drift	Snow Load	Snow Drift	Snow Load	Snow Drift	
(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	(kPa)	
3.02	3.02	3.02	7.15	3.02	3.02	

Figure 4: Snow Loads on Building From West Elevation

The upper roof with a perimeter parapet and the cantilevered windows both have drifts which occur due to height difference. However, the load caused by the drift is smaller than that caused by the balanced snow load. Therefore the drift load is taken as the balanced snow load.

Snow loads also had to be considered around two mechanical units on the roof. However, since the mechanical units width are less than $\frac{3.0S_s}{v}$, the effect of the mechanical units on the snow load can be ignored.

4.3 Dead Loads

Dead loads result from the structure's self weight. The dead load would include everything in the building such as mechanical and electrical systems, aesthetic materials (flooring), structural materials (steel beams, columns and roof membranes), and nonstructural building materials (partitions). The dead loads for each floor were calculated separately. The first and second floors had a consistent dead load throughout since the same construction materials were used.

First and Second Floor Dead Load:

Mechanical & Electrical	0.25 kPa
Ceiling	0.20 kPa
Flooring	0.10 kPa
Concrete Slab	1.62 kPa
Structure	0.40 kPa
Partitions	<u>1.00 kPa</u>
	3.57 kPa

8

The roof was designed using two types of building materials, wood and steel. A common area was designed using a combination of wooden decking resting on glulam beams, while the remaining area was designed using steel decking resting on open web steel joists.

Roof - Wooden Section Dead Load:

Mechanical & Electrical	0.25 kPa
Roofing & Decking	0.30 kPa
Ceiling System	0.20 kPa
Structure	<u>1.21 kPa</u>
	1.96 kPa

Roof - Steel Section Dead Load:

Mechanical & Electrical	0.25 kPa
Roofing & Decking	0.30 kPa
Ceiling System	0.20 kPa
Structure	<u>0.30 kPa</u>
	1.05 kPa

4.4 Live Loads

Live loads result from the human occupancy of the structure. Varying live loads are provided in a table from the NBC's Division B, Part 4, Table 4.1.5.3.(1). This table outlines all possible live loads for varying rooms and buildings. If the snow load on the roof is less than one kilopascal (kPa), then a live load of one kPa would be added to the room instead. The snow load for the Gibraltar Office Building exceeded one kPa; therefore, no live load is placed on the roof. The first and second floors had a consistent live load throughout since the building type is consistent and the floor layouts were similar.

First and Second Floor Live Loads:

4.8 kPa For Corridors, Lobbies, M&E Rooms, and Storage Areas; and 2.4 kPa Offices, Washrooms, and Closets.

5. Geotechnical Information

Geotechnical Report No. 121612153 prepared by Stantec Consulting Limited and dated July 16th, 2010 for a site close to the proposed Gibraltar Office Building location provided design criteria for the foundation design. Although the information from this report is not for the exact location of the Gibraltar Office Building, the subsurface conditions will be very similar to the proposed site since soil conditions do not vary significantly over such a short distance.

Geotechnical information such as the allowable bearing pressure (150 kPa), the ultimate bearing capacity (300 kPa), and unit weight of soil (18 kN/m^3) was taken from the report to complete the concrete foundations and concrete wall designs. The report also stated that exterior and interior footings will have a minimum soil cover of 1200 mm or equivalent insulation for frost protection. As a result exterior footings will have the minimum 1200 mm soil cover and interior footings will have a minimum depth of 900 mm as they are less susceptible to frost penetration due to their interior locations and insulation.

6. Design Analysis and Specifications

6.1 Structural Framing

Structural buildings can be created using a wide variety of materials and support systems. There are typically three different types of structural elements in a structural support system that includes the horizontal spanning system such as decking, joists, and beams, the vertical support system such as columns and footings, and the lateral support system such as diaphragms, cross bracing, and moment connections. These structural support systems are what keep structures standing. All structural design calculations will be attached in Appendix B.

6.1.1 Structural Framing Plan

The Gibraltar Office Building has a basement, main floor, second floor, and roof. The roof which is referred to as the upper roof, uses a decking and joists made of both wood and steel, steels beams, and steel columns. The roof uses diaphragm action to resist lateral loading.

The second floor uses composite decking, steel joists, steel beams, and steel columns to transfer the loads on that floor and the loads from the above level. The second floor uses diaphragm action and cross bracing to resist the lateral loads.

The main floor which is referred to as the first floor, also uses composite decking, steel joists, steel beams, and steel columns to transfer the loads on that floor and the loads from the two above levels. The main floor also has area with a concrete slab, strip footings, pedestals, and spread footings. The main floor uses cross bracing and moment connections to resist the lateral loading.

The basement uses a concrete slab with steel columns, pedestals, spread footings, foundation walls, and strip footings to transfer all of the office building's loads to the underlying soils. Since the east side of the building is exposed to lateral loading, there is also cross bracing used in the basement to resist this loading.

6.1.2 Load Transfer Sketch

In order to determine the loading on all the structural elements, a load transfer sketch was created to assist in determining the loading patterns on each structural element. The loads transfer through the decking, onto the joists that sit on beams. From the beams, the loads transfer to the columns and then transfer the all office building's load to the foundations and into the underlying soils. These transferred loads are unfactored because the unfactored live load is required for deflection calculations in certain

structural elements. The unfactored loading transfer sketches for each of the four levels are attached in Appendix C.

6.2 Decking

Steel decking, composite decking and wood decking were used in the Gibraltar office Building design to resist roof and floor loads. The decking transfers the loading to the underlying glulam beams and open web steel joists.

6.2.1 Steel Decking

Steel decking is used to transfer snow load and dead loads to the joist systems. The steel decking will be required to have diaphragm action in order to resist the lateral wind loading. Steel decking is typically designed by steel fabricators. The steel decking selected for the Gibraltar Office Building is designed by CANAM and is illustrated in Figure 5.

Figure 5: Steel Decking

Steel decking was used for the upper roof of the building in the area of Gridlines 4 to 8, and A to F. To select the optimal steel deck section, the CANAM Steel Deck Catalog was used. Factored and unfactored loads were calculated, and the P-3615 Metric Table of the CANAM Catalogue was used to select a span which could resist the applied loads. Using the chosen deck span, maximum deflection of the decking was calculated using a simply supported beam analogy. Final preliminary selection comprised of a P-3615 profile steel deck with a span of 1500 mm and 38 mm depth as summarized in Table 3.

Tuble 5. building of bleer Deeking Requirements.							
	Specified	Specified		Total		Span Between	
	Snow Load	Dead Load	Span	Depth	Allowable	Supports	
Structure	(kPa)	(kPa)	Type	(mm)	Deflection	(mm)	
Roof Deck	3.02	0.75	Triple Span	38	$\Delta = \frac{l}{360}$	1500	

Table 3: Summary of Steel Decking Requirements:

6.2.2 Composite Decking

Composite decking is typically designed using structural concrete with structural steel mesh. This system is used in order to create a mechanical and chemical bond between the steel deck, steel mesh, and concrete slab. This composite decking is illustrated in Figure 6.

Figure 6: Composite Deck

Preliminary composite decking sections were chosen for the first and second interior floor systems, as well as the lower roof due to the outside patio area. Each area's factored and unfactored loads were calculated, and the P-3615 Composite Metric Table of the CANAM Catalogue was used to select a span which could resist the applied loads. Using the chosen decking span, maximum deflection of the decking was calculated using a simply supported beam analogy. Final preliminary selections of the building's composite decks are summarized in Table 4. The preliminary selections use a 38 mm steel deck and the concrete covers both this deck and 52 mm above the top of the flute.

Structure	Specified Live Load (kPa)	Specified Snow Load (kPa)	Specified Dead Load (kPa)	Span Type	Total Thickness	Deck Span (mm)
First Floor	2.4	N/A	3.17	Triple Span	90 mm	1950
Second Floor	2.4	N/A	3.17	Triple Span	90 mm	1950
Lower Roof	N/A	7.15 kPa	0.75	Triple Span	90 mm	1800

Table 4: Summary of Composite Decking Requirements

6.2.3 Wood Decking

Wood decking which is pictured in Figure 7 was selected as the most optimal section for upper roof area between Gridlines 1 to 4, and A.3 to D.2. This area is over a common area on the second floor where the office building's architect has specified wooden or cross laminated timber (CLT) paneling supported on glulam beams. Both wooden decking and CLT paneling options were considered with the most economical and environmentally sustainable material chosen for the final design.

Figure 7: Wooden Decking

Wood decking thickness and span were calculated following design criteria found in the Canadian Wood Council's Wood Design Manual, 2005. Factored and unfactored loads were used to select a 64 mm thick commercial grade Douglas-Fir-Larch wood deck with a span of 3200 mm which met all deflection criteria. Using the decking span of 3200 mm yielded a cost estimate of seventeen thousand dollars for the area of wooden decking which includes the alternate glulam beam spacing that would support the decking.

6.2.4 Cross Laminated Timber Paneling

Cross laminated timber (CLT) paneling such as that pictured in Figure 8, is an engineered product that has layers of wood glued together. The wood's grain alternate at ninety degree angles for each glued layer.

Premier Engineering Consultants Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, NL, A1B 3X5 PremierEngineering@live.ca

Figure 8: CLT Paneling Application

The same factored and unfactored loads that were used to select the wood decking were used for the CLT panel selection. A double span design with a maximum panel length of 4050 mm and a thickness of 32 mm was chosen which met all deflection criteria. Using the decking span of 4050 mm yielded a cost estimate of forty thousand dollars for the area of wooden CLT paneling which includes the alternate glulam beam spacing that would support the paneling.

The wood decking option was chosen for the final design as it is the cheaper option. CLT paneling does have other benefits which should be further reviewed before the building is constructed. CLT paneling has inherent properties which enhance a room's acoustic properties, hasten the construction process since they are large pre-fabricated panels, and once the panels are in place they are very airtight, increasing the energy efficiency of the building. These properties could potentially save the owner money in the long run for operating costs but further research and investigation would be required.

6.3 Joist System

Joist systems carry the loads from the decking systems and transfer it to the beams. Joist systems can be made from different sections including beams and open web steel joists. The joists can be made from different types of materials such as the more common materials, steel and wood. Joists are designed to resist the loading conditions as specified in the Canadian Institute of Steel Construction's (CISC) Handbook of Steel

Construction, Tenth Edition, Clause 16.5.1, S16-01. The joist systems used in the Gibraltar Office Building are open web steel joists and glulam beams.

6.3.1 Open Web Steel Joists

Open web steel joists (OWSJ) are the most common joist system. They are used over beams because of their light weight and constructability. OWSJ are typically designed by a steel fabricator. The OWSJ selected for the Gibraltar Office Building are designed by CANAM and is pictured in Figure 9.

Figure 9: Open Web Steel Joists

OWSJ were designed for the first and second floor, and roof. The roof and lower roof on the second floor were designed for dead load and snow load while the remaining second floor and first floor were designed for dead load and live load. There are 89 OWSJ in the office building but only 10 OWSJ had to be selected. To select the optimal preliminary OWSJ sections, the CANAM Joist Catalog was used. Factored and unfactored loads were calculated using the selected deck spans and joist lengths, and the Metric Joist Selection Tables of the CANAM Catalogue were used to select a depth which could resist the applied loads. Final preliminary joist selections comprised of OWSJ ranged from three to ten metres with a joist depth between 250 mm and 750 mm as summarized in Table 5.

Table 5: Summary of Preliminary Joist Selection						
		Specified		Specified	Span	Joist
	Span	Live Load	Specified Snow	Dead Load	Between	Depth
Gridlines	(mm)	(kPa)	Load (kPa)	(kPa)	Joists (mm)	(mm)
			First Floor			
B.1-C, 3-4	3 000	2.4	N/A	3.57	1950	250
A-B, 7.5-8	4 000	2.4	N/A	3.57	1950	400
A-C, 4-7.5	0.000	2.4	NT / A	3 57	1500	750
C-F, 3-4	9 000	2.4	1N/A	5.57	1500	750
C-F, 4-8	10,000	2.4	N/A	3.57	1500	750
	Second Floor					
C-F, 4-8	3 000	2.4	N/A	3.57	1950	250
A-B, 7.5-8	4 000	2.4	NT / A	3 57	1050	400
C-D, 3-4	4 000	2.4	11/11	5.57	1950	400
A.2-D.2, 1-2	7 000	N/A	7.15 kPa	1.05	1800	650
A.2-D.2, 2-3	8 000	2.4	N/A	3.57	1800	650
A-C, 4-7.5	0.000	2.4	NT / A	2 57	1500	700
C-F, 4-8	9 000	2.4	$1N/\Lambda$	5.57	1500	700
Roof						
A-C, 4-8	9,000	N/A	3.02	1.05	1 500	650
C-F, 4-8	2 000	$\perp N / \perp I$	5.02	1.05	1 300	050

The office building also required tie joists which tie the joists to the columns the building. There are a total of twenty tie joists between the first floor and roof. A typical tie joist is illustrated in Figure 10.

17

6.3.2 Glulam Beams

Glulam (glued-laminated timber) beams are a type of structural timber product that is manufactured use individual pieces of timber glued together under very specific and controlled conditions. Glulam beams were used in this application due to their aesthetic appeal as pictured in Figure 11 and high strength characteristics.

Figure 11: Glulam Beams

Glulam beams were designed for both wood decking and CLT paneling options using the WoodWorks Sizer 8.2 computer program. Inputs into the Sizer program included the load on the beam, the span of the beam (including cantilever portion) and the material chosen for the beam. Deflection criteria were also input and the Sizer program outputted several sections which met bending and deflection criteria. The area of each potential section was calculated and the beam with the lowest area, and therefore lowest weight, was selected. For the wood decking option a 175x532 mm Douglas-Fir-Larch glulam beam was selected at a maximum 3200 mm centerline to centerline spacing; whereas the CLT paneling resulted in a 215x532 mm Douglas-Fir-Larch glulam beam with a maximum 4050 mm centreline to centreline spacing. As mentioned in Section 7.2.4, the wood decking option with the 175x532 mm Douglas-Fir-Larch glulam beam with maximum 3200 mm spacing was chosen as the best design alternative.

6.4 Beams

Steel beams are integral part of the structural framing system of any building. The beams pick up all the loads from the open web steel joists and transfer them to the columns. Steel beams can be made from many different sections including but not limited to

WWF Sections, W Sections, Angles, and Channels. Steel beams are designed according to the Canadian Institute of Steel Construction's (CISC) Handbook of Steel Construction, Tenth Edition.

6.4.1 Steel Beams

The Gibraltar Office Building has a total of eighty-nine beams. Only sixty-four beams were required to be designed due to similar beam spans and loading cases. The majority of the beams will be connected as illustrated in Figure 12, while others are simply supported on columns.

All of the beams are designed using the Blue Beam Tables which is in accordance to the CISC requirements of CSA Standard G40.21-350W, ASTM A992, and A572 Grade 50 using Clause 13.4.1.1, CSA S16-09, and Clauses 13.5 and 13.6, CSA S16-09. The beams for the office building are Class 1 and 2 W Sections at a minimum section size of W200x19. All of the beams' lengths range from 1800 mm to 12,400 mm, but the unbraced lengths are all less than 1500. All of the upper and lower roof beams were checked for wind uplift and one beam had to have their section sizes increased.

The majority of the beams were simply supported with uniform load and they were designed using spreadsheets for maximum moment, shear, and deflection. The other beams that have point loads and are not simply supported were entered into S-Frame and designed according to S-Frame's output for maximum moment, shear, and deflection which are available on the attached Files CD. One beam was also designed using S-Frame and S-Steel due to lateral loading along the east side of the building where a moment connection was not feasible. The beam had to be designed to withstand this lateral load. After designing all of the beams, there was a final fifteen section sizes which are summarized in Table 6.

19

able 6: Summary of Beam Desi				
Beam	Section Size			
B1	W200x19			
B2	W310x21			
B3	W310x24			
B4	W310x28			
B5	W360x33			
B6	W360x45			
B7	W410x39			
B8	W410x46			
B9	W460x52			
B10	W460x60			
B11	W530x66			
B12	W530x74			
B13	W610x82			
B14	W760x134			
B15	W760x161			

Tabl C D n

6.4.2 Steel Channels

The Gibraltar Office Building uses steel channels for framing around cantilever windows along the southwest corner as seen in Figures 3 and 4. Cantilevered channels were designed along the top of the windows using a nominal 1 kPa dead load and calculated cantilevered windows snow load. Cantilevered channels were also designed along the base of the windows using the second floor dead and live loads. There are twenty-six cantilevered channels required for the cantilevered windows. Channels were also provided along the top and bottom of free end of the cantilevered channels in order to provided framing and system stability. Though, these four channels will carry no loads.

The cantilevered channels were designed using the same calculation procedures and clauses as the beams in Section 7.4.1. The final channel section sizes are summarized in Table 7. The cantilevered window framing detail is illustrated in Figure 13

Location	Section Size	Length (m)	
Тор	C150x12	1.323	
Bottom	C150x12	1.323	
Edge	C150x12	8.534 (South) 10.753 (West)	

Table 7: Summary of Channel Design

Figure 13: Cantilevered Window Framing Detail

6.5 Columns

Steel columns are integral part of the structural framing system of any building. The columns pick up all the loads from the beams and transfer them to the footings. Steel columns can be made from WWF Sections, W Sections, Hollow Square Sections, or Hollow Round Sections. Steel columns are designed according to the Canadian Institute of Steel Construction's (CISC) Handbook of Steel Construction, Tenth Edition.

6.5.1 Steel Columns

The Gibraltar Office Building has twenty-nine columns in total. Only twenty-three columns were required to be designed due to similar column spans and loading cases. This brought the total number of column designs down to twenty-three columns. From

these columns, all the factored loads that are transferred from the beams were summarized in a table attached in Appendix D.

All of the columns are designed according the CISC requirements of CSA Standard G40.20 and ASTM A500, using Clauses 13.3.1, 13.3.5, and CSA S16-09. The columns for the office building are Class C Hollow Square Sections and have a minimum section size of HSS 127x127x4.8 as illustrated in the typical beam to column connection detail in Figure 14.

Figure 14: Typical Beam to Column Details

All of the columns' lengths range from 3660 mm to 10,980 mm, but the unbraced lengths are only 3660 mm with the exception of the exterior canopy column which has an unbraced length of 7320 mm. All the column sections were bumped up a section size with the exception of the four worst case scenarios at four different section sizes. Also, three columns sizes had to be increased due to the lateral loading. The final four sizes for column designs are summarized in Table 8.

Column	Section Size	Factored Load (kN)
C1	HSS 127x127x4.8	350
C2	HSS 152x152x4.8	565
C3	HSS 178x178x6.4	940
C4	HSS 203x203x8.0	1255

Table 8: Summary of Column Design

6.5.2 Column Base Plates

Column base plates are required when the steel columns bear on the top of the concrete pedestals. This connection helps stabilize the column and helps distribute the building's loads to the footings without exceeding the concrete bearing resistance. The column base plate will typically use four anchor bolts in order to facilitate the structural erection. In order to obtain any adhesion between the column base plate and pedestal, a small gap is left between them and filled with grout. A typical column-base plate-pedestal connection is pictured in Figure 15.

Figure 15: Typical Column-Base Plate-Pedestal Connection Detail

All of the base plates are designed according the CISC requirements of CSA Standard G40.21, using Clause 10.8, CSA A23.3-04. The base plates for the office building are square plates at a minimum section size of PL 160x160x10. There are only four different types of base plates to accommodate the four different steel columns and concrete pedestals. The final four sizes for column base plate designs are summarized in Table 9.

Tuble 7. Building of Column Dube Thate Design				
Column	Section Size	Factored Load (kN)		
C1	PL 160x160x10	350		
C2	PL 210x210x10	565		
C3	PL 270x270x20	940		
C4	PL 310x310x20	1255		

Table 9: Summary of Column Base Plate Design

6.6 Lateral Bracing

Lateral bracing is used to resist and transfer the lateral loading resulting from wind loading and earthquake loading. Every structure can typically use multiple types of lateral framing including cross bracing, 'V' bracing, moment connections, and shear walls.

These framing elements transfer the lateral loading from the rooftop through the columns, and into the foundations and underlying soils. All of the lateral bracing is designed according to the Canadian Institute of Steel Construction's (CISC) Handbook of Steel Construction, Tenth Edition.

6.6.1 Cross Bracing

Cross bracing is used to resist the lateral wind and earthquake loadings. They can be made of very many different sections of steel including rods, double angles, and hollow sections. The bracing can be designed in both tension and compression as it was for the Gibraltar Office Building. A typical 'V' bracing detail made of hollow square sections in a window bay is pictured in Figure 16.

Figure 16: Typical HSS 'V' Bracing in Window Bay

The difficulty with providing cross bracing at this office building is the windows. Since a large portion of the siding has windows, it was very difficult to provide cross bracing that is ascetically pleasing. The architect and our client agreed to put cross bracing in three bays with windows. The bracing was originally designed as double angles but at the request of the architect and our client, they requested the bracing to be made from hollow square sections.

One level of cross bracing was required along Gridline 1, between C and D.2, and along Gridline D.2, between 1 and 2. Two levels of cross bracing was only required along Gridline F, between 4 and 5. Three levels of cross bracing were required along Gridline A, between 4 and 5, along Gridline 4, between D and F, and along Gridline 8, between A and B.

The required sections were input into S-Frame and the relevant load cases were applied. The beams and columns were modelled as beam members and the cross bracing was modelled as truss members. Originally, the cross bracing was modelled as angles; however as requested by the architecture and our client, the bracing was changed to hollow square sections. After running the model in S-Frame for static loading, the bending moment, shear force, and axial force diagrams were reviewed and compared with hand calculations. The model was then run using S-Steel which provided the optimal design sections. After analysing the S-Frame and S-Steel results, there was only three different sections of crossing bracing required to accommodate the lateral loading. The final three sizes for cross bracing designs are summarized in Table 10.

Table 10. Summary of Closs Dracing Design				
Cross Bracing	Section Size	Factored Load (kN/m)		
CB1	HSS 127x127x4.8	18.4		
CB2	HSS 152x152x4.8	18.4		
CB3	HSS 178x178x6.4	18.4		

Table 10: Summary of Cross Bracing Design

6.6.2 Moment Connections

Moment connections are typically a last resort for lateral bracing due to the expensive installation of the connections themselves. The moment connections provide moment-resisting beam-column connections using welds, bolts, or a combination of both. Both moment connections designed for the Gibraltar Office Building used welds and a combination of bolts and welds as illustrated in Figure 17. The moment connection #1 is on the left and the moment connection #2 is on the right.

Figure 17: Moment Connection Details

There was originally four moment connections required for this office building. Instead one beam along Gridline 3 between A.1 and A.3 was designed for the lateral loading using S-Frame and S-Steel as a moment connection was not feasible between two

beams. The last two moment connections are designed for worst case scenario thus resulting only two moment connection designs.

The two moment connections are designed according the CISC requirements of CSA Standard G40.21, ASTM A992, and E49XX using Clauses 13.11, 13.12.1.2, 13.13.2.2, and 21.3 as per CSA S16-09. The beam-column and beam-column-beam moment connections are along Gridline A.2 between 1 and 2. The final moment connection details are above in Figure 17 and the final design moments for each moment connection are summarized in Table 11.

Table 11: Summary of Moment Connections

Moment Connection	Factored Shear (kN)	Factored Moment (kNm)
MC1	31.2	31.0
MC2	33.7	42.6

6.6.3 Diaphragm System

A diaphragm system is composed of steel deck sheets used for roofs and floors in order to provide support for gravity loads between the joist and beam systems. After the sheets (plain decking or composite decking) are placed, they are connected by button punch, puddle welds or screws to provide lateral resistance and stability between the sheets, thus creating a diaphragm. An example of a steel deck diaphragm showing the fastening pattern is pictured in Figure 18.

Figure 18: Steel deck Showing Diaphragm Fastening Pattern

Another important aspect of diaphragm design is its connection to the flange of perimeter horizontal beams which provides full transfer of lateral forces to the bracing as illustrated in Figure 19.

Figure 19: Typical Steel Deck Diaphragm

The Gibraltar Office Building's lateral resisting system utilized two diaphragms; the upper roof steel deck and the second floor composite deck. Since earthquake loading was removed from project scope, the diaphragms were only designed for wind loads of 1.5 kPa. To select a connection pattern, the decking was idealized as a horizontal beam with a span equal to the spacing of the lateral braces, which in this case is the span between exterior walls. Once the shear forces applied on the decking were calculated, the CANAM Steel Deck Diaphragm Catalogue was used to select a preliminary connection schedule. Using the P-3615 Diaphragm Table and Concrete Filled Decks Diaphragm Table, connection details for both of the building's diaphragms were selected based on the calculated shear forces and decking span (distance between the supporting joists). The connection patterns were then checked to ensure adequate connections were supplied at the perimeter of the deck to prevent wind uplift and to fully transfer the lateral loads to the lateral braces. Deflection of the diaphragm was also checked to ensure the system was adequately rigid and would not deform past allowable limits. The diaphragm connection schedule is summarized in Table 12.

	Deck	Total	Support Fastening	Side-Lap Fastening
Deck	Туре	Depth	Connection Schedule	Connection Schedule
Upper	Steel	28 mm	Weld 19 mm Pattern	Button Punch @
Roof	P-3615	20 11111	36/7	600 mm o/c
Second	Composite	00 mm	Weld 19 mm Pattern	Button Punch @
Floor	P-3615	90 11111	36/4	150 mm o/c

27

Table 12: Summary of Pedestal Design

6.7 Concrete Foundations

Foundations are designed to transfer and distribute the loads applied on the superstructure into the underlying soil layers. The foundation system for the Gibraltar Office Building consists of pedestals, spread footings, foundation walls, and strip footings. These foundations were designed using the geotechnical data outlined in Section 6 of this report, Cement Association of Canada's (CAC) Concrete Design Handbook, Third Edition, and Dr. Amgad Hussein's Design of Concrete & Masonry Structures course notes and examples as shown in Appendix B.5 to B.8. The slab-on-grades were not included in the scope of this project.

6.7.1 Pedestals

Each spread footing was designed with a concrete pedestal at its center for the superstructure's steel column to rest on, as pictured in Figure 20. The pedestal's main purpose is to extend through the foundation wall and transfer the superstructure load to the foundation, so the foundation wall does not carry any column loading. It was assumed that there would be no load eccentricity or moments applied to the pedestals. Therefore, only the vertical loads from the superstructure on the columns were considered in the design.

Figure 20: Typical Spread Footing with Pedestal

To design the pedestals, the loads coming down from the superstructure columns were reviewed. Columns with similar loading and sections were grouped together and the highest loading case was selected per column section. With the highest load from each column group determined, square pedestals were designed. A total of four types of pedestals were required. The final four sizes for pedestal designs are summarized in Table 13.

				Vertical
Pedestal	Factored Load (kN)	Width (mm)	Stirrup	Reinforcement
P1	350	200	10M @ 170 mm	4 – 10M bars
P2	565	250	10M @ 215 mm	4 – 15M bars
P3	940	300	10M @ 291 mm	4 - 20 M bars
P4	1255	350	10M @ 291 mm	6 - 20 M bars

Table 13: Summary of Pedestal Design

6.7.2 Spread Footings

Spread footings receive loads from the pedestal above it. A spread footing and pedestal are shown above in Figure 20. As a result, four footings were required to accommodate the four types of pedestals. In addition to the pedestal loads, the soil weight and slab-on-grade (SOG) weight were considered as part of the load on the footings. The live load on the overlying SOG was also added as a surcharge load.

The height of the soil above each footing was assumed to be 1200 mm even though all footings will not be installed to this depth. This assumption reduced the total number of footings required for the office building by choosing the worst case loading scenario. Therefore, all footings were able to be utilized in an interior, exterior, or corner application. To further simplify the design process and construction, all footings were designed to have a corner location since this is the most critical loading location. The footings were also designed to be centred directly under the pedestals in order to eliminate load eccentricities. During the design process, the minimum number of reinforcement bars was calculated in both the longitudinal and transverse directions. Whichever direction had the more bars, was then used for each direction to simplify construction. The final four spread footing designs are summarized in Table 14.

Service Dimension Heig		Height	Reinfor	Reinforcement	
Foundation	Load (kN)	(mm)	(mm)	Longitudinal	Transverse
F1	252	1200x1200	300	8 – 10M Bars @ 150 mm	8 – 10M Bars @ 150 mm
F2	405	1500x1500	350	6 – 15M Bars @ 250 mm	6 – 15M Bars @ 250 mm
F3	667	2000x2000	400	6 – 20M Bars @ 333 mm	6 – 20M Bars @ 333 mm
F4	901	2200x2200	450	5 – 25M Bars @ 440 mm	5 – 25M Bars @ 440 mm

c c

6.7.3 Foundation Walls

Foundation walls are mainly used for frost protection. The foundation walls of the Gibraltar Office Building were designed in principle as retaining walls as illustrated in Figure 21. All of the foundation walls will not have any loading on them with the exception of the foundation walls along Gridline F, between 4 and 8, Gridline 3, between C and F, and Gridline 8, between B and F. These areas will have loading bearing from the first floor.

For the ease of design and construction, all the foundation walls were designed the same under the worst case loading conditions which occur at Gridline F, between 4 and 8. The total height of soil against the wall is 3660 mm. The stability of the wall from overturning was acceptable with a factor of safety of 2.52 (allowable factor of safety was 2.0). There is no tension at the base of the wall and local bearing stresses were limited. There was no need to check the stability of the wall for sliding as the slab-on-grades will prevent the wall from sliding. But for this stability check to be correct, during construction, the slab-on-grades must be poured and cured before backfilling of the foundation walls. The final wall foundation design is summarized in Table 15.

Foundation	Height of	Wall	Reinforcement	
Wall Face	Soil	Thickness	Longitudinal	Transverse
Front of Wall	3660 mm	190 mm	15M Bars @ 500 mm	15M Bar @ 500 mm
Back of Wall	3660 mm	190 mm	25M Bars @ 500 mm	15M Bar @ 500 mm

Table 15: Summary of Foundation Wall Design

As a result of a door being installed between the basement and first floor on a stair landing, the foundation wall had to be bumped up a metre for framing purposes along the south wall. The two beams along the top of this foundation wall were removed as a result. The foundation wall did not require redesigning as the worst case scenario was still located along Gridline F, between 4 and 8.

6.7.4 Strip Footings

Strip footings, such as the one in Figure 21 with a foundation wall, were designed around the entire Gibraltar Office Building's perimeter spanning along the base of the foundation walls and along the interior building wall. The strip footings were designed to support small loads resulting from the foundation wall resting on it, and the joists resting on the foundation walls along Gridline F, between 4 and 8, Gridline 3, between C and F, and Gridline 8, between B and F.

Strips footings receive loads from the foundation walls above it. In addition to the foundation wall loads, the soil weight and slab-on-grade (SOG) weight were considered as part of the load on the footings. The live load on the overlying SOG was also added as a surcharge load.

31

The maximum load was chosen from Gridline F, between 4 and 8 and was used to design the strip footing. The same strip footing design was utilized for the entire building to simplify design and construction. The final strip footing design is summarized in Table 16.

Service Load	Width	Height	Reinforcement	
(kN/m)	(mm)	(mm)	Longitudinal	Transverse
27.27	400	150	15M Bars @ 450 mm	15M Bars @ 400 mm

Table 16: Summary of Stripping Footing Design

7. Drawings

The most important deliverable for any design project is a good, clean, working set of drawings. The structural drawings that was required for this project was a set of general notes, foundation plan, framing plans for each floor, structural elevations, structural cross-sections, and structural details.

The drawing number for the set of general notes drawing is WS-1.01. The general notes are broken down into the following three sections:

- Structural steel and steel deck notes;
- Structural wood and wood deck notes; and
- Concrete and foundation general notes.

These general notes are used for detailing design codes, design requirements, connection and design details, and other critical design information. The contractor must adhere to these general notes in order for the design of this office building to be successfully completed.

The foundation plan and framing plans for each floor are located under the same drawing number which is WS-2.01 to WS-2.04. These four plans indicate the concrete and steel designs as required for the office building. They also provide the location of the cross-sections. The foundation plan includes:

- Top of foundation wall elevations and lengths;
- Four concrete pedestal designs;
- Four concrete spread footing designs and their layouts; and
- Strip footing layout.

The other three framing plans for the first floor, second floor, and roof include:

- All the open web steel joists and glulam beams layouts;
- All the beam and channel sizes and their layouts;
- Four steel column designs and their layouts;
- Three cross-bracing designs and their layouts;
- Two moment connections and their layouts; and
- The location and type of materials for the upper roof decking.

33

The structural elevations and cross-sections are located under the same drawing number which is WS-5.01 to WS-5.07. These seven plans indicate the location of the concrete and steel designs as required for the office building. The structural elevations are laid out on each cardinal direction and they include:

- Steel structural members including decking, open web steel joists, beams, channels, columns, and cross bracing;
- Wood structural members including wood decking and glulam beams; and
- Concrete structural members including foundation walls, strip footings, pedestals, and spread footings.

The three cross-section drawings are labelled as A, B, and C and they are sections of the foundations, first floor, second floor, and roof twice along the east-west direction and once along the north-south direction. The cross-section drawings include all the items as laid out for the structural elevations.

The drawing number for structural detail drawings is WS-6.01 to WS-6.03. The structural details indicate the concrete, steel, and wood designs and their connections in detail that are required for the office building. The multiple structural details are laid out on each sheet and the details include:

- Wood decking connections;
- Open web steel joists (typical joists and tie joists) and glulam beam connections;
- Glulam beam to steel beam connection detail;
- Beam, channel, and column connections;
- Column base plate details;
- Cross bracing connection detail;
- Moment connection details;
- Column-Base Plate-Pedestal connection;
- Interior and exterior concrete pedestals and spread footing design details;
- Concrete wall and strip footing design details; and
- Critical wall section details.

The set of general notes, foundation plan, framing plans for each floor, structural elevations, structural cross-sections, and structural details drawings are all attached in Appendix E.

8. Quantity Takeoff

A quantity takeoff is used to estimate the total amount of materials required for the completion of a contract for a project. The total cost associated with those required materials is also provided. The quantity takeoff is typically split into sections for material types which include a description, the unit of measurement, the total required quantity per description, the unit price per unit, and the total cost of that description. Typically, a cost is added for wastage of that description.

The cost estimate of a quantity takeoff would typically include the cost for labour, delivery, and miscellaneous supplies. Instead of having separate sections for these items, the unit cost per description would include these items.

The quantity takeoff for the Gibraltar Office Building was a Class-B (pre-tender) estimate and it was broken down into four sections, concrete, steel, wood, and decking. Each unit price includes the cost for labour, delivery, and miscellaneous supplies. There is a five percent wastage added to every subsection for material wastage on site and for any quantities that were missed. The area per floor for this office building is approximately 512 m²

The concrete section includes six subsections including spread footings, pedestals, foundation walls, strip footings, slab-on-grades, and control joints. All units are in cubic metres with the exception of control joints (metres) and the total quantity of concrete required for this project is 100.8 m³. The unit costs for these subsections range from $$520/m^3$ to $$700/m^3$ with the exception of control joints (\$10/m). The total cost of required concrete is \$58,000.

The steel section includes six subsections including beams, columns, lateral bracing, channels, open web steel joists, and column base plates. All units are in tonnes and the total quantity of steel required for this project is 45.08 tonnes. The unit cost for these subsections is \$4700/tonne. The total cost of required steel is \$212,000.

The wood section includes three subsections including wood decking, cross laminated timber (CLT) panels, and glulam beams. The quantity and cost estimate for this section depends entirely on the cheaper option, wood decking or CLT panels. The units for the decking options are in square metres and the total quantity of wood decking required for this project is 225.5 m². The units for the glulam beams is in metres and the total required quantity for the wood decking option is 162.0 m, while the total required quantity for the CLT panels option is 126.0 m.

The unit cost for wood decking and CLT panels is \$57/m² and \$161/m², respectively. The unit cost for the glulam beams is \$26/m. The total cost of the wood decking option and CLT panel option is \$17,000 and \$40,000 respectively. Therefore, the wood decking option is cheaper, thus the total cost of required wood is \$17,000.

The decking section includes two subsections including composite decking and steel decking. All units are in square metres and the total quantity of decking required for this project is 2102.6 m². The unit cost for these subsections range from $35/m^2$ to $110/m^2$. The total cost of required decking is one-hundred eight thousand dollars.

The subtotal of all four sections is \$395,000. Adding thirteen percent harmonized sales tax to this subtotal comes out to be \$51,000. The grand total cost of this project is \$446,000. The final quantity takeoff sheets are attached in Appendix F.

9. Conclusions

Each building has a unique structural support system designed that is based on the vertical and lateral loadings applied on it. The Gibraltar Office Building utilized a main structural system composed of steel and wood framing with concrete foundations. CANAM designed decking and open web steel joists are supported on steel beams. Columns make up the floor and roof systems within the building. A common area on the second floor was designed using wood decking and glulam beams supported on steel beams and columns.

Final building designs included decking and joists made of both wood and steel, steel beams, and steel columns to resist vertical loadings on the upper roof. The second and first floors were designed using composite decking, steel joists, steel beams, and steel columns to transfer the loads through the pedestals and foundation walls to the spread and strip footings, respectively, where the foundations are located in the basement and on the main floor areas.

Lateral loading was resisted by the building using diaphragm action in the roof decking and second floor composite decking. To pass the loads resisted by the diaphragms to the foundations, cross bracing was used at each level.

To represent the design selections of the Gibraltar Office Building, a full set of working structural drawings were developed. The drawings have important general notes, framing plans for the foundation, first floor, second floor, and roof, structural elevation drawings, cross-sectional views, and structural details. Review of the drawings yielded a quantity takeoff and cost estimate of the building's structural aspects which came to a subtotal of \$395,000. Adding thirteen percent harmonized sales tax to this, the total cost of this project is \$446,000.

10. References

Canadian Insitute of Steel Construction. (2011). *Handbook of Steel Construction, Tenth Edition*. Markham, On.: Canadian Insitute of Steel Construction.

Canadian Wood Council. (2005). Wood Design Manual 2005. Ottawa, On.: Canadian Wood Council.

Canadian Wood Council, (2013). *Glulam*. Ottawa, On: Canadian Wood Council. Available: http://www.cwc.ca/index.php/en/wood-products/glulam. Last Accessed March 27th, 2013.

CANAM Canada, (2010). *Steel Deck*. Beauce, Qc.: Canam Group Inc. Available: http://www.canam-steeljoist.ws/www/v4/ecanamj.nsf/va_redir/tablier?open# diaphragm. Last Accessed March 27th, 2013.

CANAM Joists and Steel Deck, (2005). Joist Catalogue. Beauce, Qc.: Canam Group Inc.

CANAM Joists and Steel Deck, (2006). Steel Deck. Beauce, Qc.: Canam Group Inc.

CANAM Joists and Steel Deck, (2007). *Steel Deck Diaphragm*. Beauce, Qc.: Canam Group Inc.

CANAM United Steel Deck, (2011). *Canam manufacturers the United Steel Deck brand of Steel Deck Institute approved products*. Beauce, Qc.: Canam Group Inc. Available: http://www.canam-steeljoists.ws/www/v4/ecanams.nsf/steeljoists/steel-deck?open. Last Accessed March 27th, 2013.

Cement Association of Canada. (2010). *Concrete Design Handbook, Third Edition*. Ottawa, On.: Cement Association of Canada.

CrossLAM Timber Solutions Inc., (2012). *What is Cross Laminated Timber (CLT) and how can it help you.* Kalispell, Mt: CrossLAM Timber Solutions Inc. Available: http://www.crosslamsolutions.com/what-is-clt-cross-laminated-timber. Last Accessed March 27th, 2013.

Dr. A. Hussein, (2011). *Design of Concrete and Masonry Structures*. St. John's, NL.: Memorial University of Newfoundland

Dr. A. Hussein, (2013). CHAPTER 3 – LOW RISE STEEL STRUCTURES. St. John's, NL.: Memorial University of Newfoundland

Engineering Systems Pty Ltd. (2013). *Stiffened Moment Base Plate on HSS Column*. Turramurra, NSW.: Engineering Systems Pty Ltd. Available: http://www.microstran.com.au/lmc_gallery_base.htm Last Accessed March 27th, 2013.

J. Anstey, (2012). Open Web Steel Joists. Paradise, NL.: DBA Consulting Engineers Ltd.

Land Information Services, (2010). *Map Centre*. St. John's, NL.: City of St. John's. Available: http://map.stjohns.ca/mapcentre/mapcentre.html. Last Accessed March 25th, 2013.

Melingoed Ltd, (2013). *Engineered Joists – Glulam Beams*. Newcastle Emlyn, CARMS.: Melingoed Ltd. Available: http://melingoed.co.uk/glulam-beams/. Last Accessed March 27th, 2013.

National Research Council Canada, (2011). User's Guide – NBC 2010 Structrural Commentaries (Part 4 of Divison B). Ottawa, On.: National Research Council of Canada.

S. Hicks, (2012). *Wayne Gretzkey Sport Center project a showcse for cross-laminated timber*. Markham, On.: Daily Commercial News.

Structural Wood Corporation, (2008). *Residential Truss 6*. St. Paul, Mn.: Structural Wood Corporation. Available: http://www.structural-wood.com/Auto-Photo-Galleries/ Residential/3.html. Last Accessed March 27th, 2013.

Structurlam, (2012). Cross Laminated Timber Design Guide. Bracebridge, On.: Structurlam.

Wood Solutions, (2011). *Cross Laminated Timber (CLT)*. Australia: Wood Solutions. Available: www.woodsolutions.com.au/Wood-Product-Categories/Cross-Laminated-Timber-CLT. Last Accessed March 27th, 2013.

Appendix A: Load Calculations

A.1: Wind Loads

Primary Structural Action	Mar 9,13 AS # AH
H = 11.0 m W = 18.3 m , Iw = 1.0 $h = H + 4W \tan \alpha = H^{B} 11.0 + 4(18.3) \tan 0 = 11.0 \text{ m}$	
$w = \frac{1}{2h} = \frac{\#(7.1m)(13.8m) + (3.4m)(18.3)}{11.0m} = 15.4m$	
H < 60 m 3 H/W = 11 = 0.71 < 4.0. : Use Static Procedure	
From NBC 4.1.7.1(5): $Ce = (\frac{h}{10})^{0.2} = (\frac{11}{10})^{0.2} = 1.02 > 0.9$.: $Ce = 1.02$ From Table C-2: $9_{50} = 0.78$ kPa	
$D_{smin}(W, L) = min(18.3, 34.4) = 18.3 m$ $H < 20 m \implies H/O_{s} = U.0/18.3 = 0.60 < 1 : Use Pa 19-21, 25-28, Fig.$	1-3 for Cp Cg.
A-D From Figure J-7. CpG for Interio- Frame in E-W D:, -1.04 KPa	rection.
P = I = 0.7 - 1.3 $P = I = 0.0 (0.78) (1.05)$	5g 1) Cp (g
$-0.55 \qquad 0.75 \qquad -0.44 \qquad = 0.6 \qquad P = 0.80 CpCg \qquad = 0.55 \qquad KPa \qquad = 8Pa \qquad CWind$	
Ad From Figure I-7: GCg for Exterior Frame in E-W Dire	ection. 37 13
Z = Min (0, 1w, 0, 4H) $T(-6 1Aa = Max(2, 0, 0, 4H)$	$ = \min\{\frac{1.83}{1.37}, \frac{4.4}{1.37}\} = \frac{1.8}{1.37} = \max\{\frac{1.47}{1.37}, 0.73, 1\} = \frac{1.47}{1.37}, \frac{1.37}{1.37}, $
-1.0 - 3.0 -0.8 1.15 -0.64 $-0.8 - 1.6$ -0.93 $P = 0.80 CpCg$	
TTURT TILL TILL Wind	

19-21, 25-28 Fig I.3

This is for top poorf From N to S (External)

$$\frac{P_{top pool}}{P_{top}} = I_W \frac{9_{1/50} Ce Cg Cp}{P_{top}} = 1:0 * 0.8 * 0.986 * (-1:5) = -1:18 \text{ kPa}$$

$$P_{top} = I_W \frac{9_{1/50} Ce Cg Cp}{P_{top}}$$

$$P_{N_{0}00} = I_{N_{0}0} = 1.0 * 0.8 * 986 * 1.3 = 1.03 \text{ KPa}$$

Negative

$$\frac{P_{\text{North Wall}}}{= 1.0 * 0.8 * 0.986 * (-1.5) = -1.18 \text{ KPa}$$

Peast & west wall = IN 91/50 Ce CgCp

$$= 1.0 * 0.8 * 0.986 * (-1.5) = -1.18$$
 KPa

From E to W (External)

Internal Pressure

Premier Engineering Consultants Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, NL, A1B 3X5 PremierEngineering@live.ca

A.2: Snow Loads

(4)

Snow load

uppers roof with Parapet on south side only: (17.097mx 12:558m)

5

5 = 3:02 KPa due to the drift at parapet being Smallers than the balanced Snow load. See

calculation for upper poof with Papapet.

Snow load

Cantileversed window bays on south-west corners

5=3.02 kPa due to the draift at parapet being smallers than the balanced Snow load. See calculation for upper roof with parapet.

Snow load due to Mechanical Units Mars, - Check to determine if the snow drift needs to be considered: Ma- 5, 2013 $\frac{30^{56}}{4} = \frac{3.0s_{s}}{4} = \frac{2.9s_{s}^{56}}{3.0} = 2.9m$ Width of mechanical = 2.57m (maximum dimension of mech. unit). Since the width of the mechanical unit $< \frac{3.0 \text{ s}_{2}}{7}$ the drift load does not need to be considered. (Paragraph 42, of snow loads, page G-13. User's Guide -NBC 2010 Structural Commentaries (Part 4 of Division B)

Premier Engineering Consultants Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, NL, A1B 3X5 PremierEngineering@live.ca

A.3: Dead Loads

hool

Flooring is the same as the decking weight calculated above = 0.1 kPa

۰ ۵

Wooden Roof Dead Loads:

<u>Wooden Deck</u> Assume a 68 mm deck thickness Use Douglas Fir (unseasoned) force = 5.34 kN/m^3 (taken from table on pg 5-56 of Steel code) Wooden deck load = w_{wd} = (5.34 kN/m^3)(0.068m) = 0.363 kN/m²

Wooden BeamsAssume a depth of 600 mm and a width of 400 mmAssume a 1500 mm span between beamsBeam Span = 7928 mmTributary area = $(1.5 \text{ m})(7.928 \text{ m}) = 11.89 \text{ m}^2$ Load due to a beam = $(0.6 \text{ m})(0.4 \text{ m})(7.928 \text{ m})(5.34 \text{ kN/m}^3) = 10.16 \text{ kN}$ Distributed load due to beam = $\underline{Load due to a beam}$ Tributary Area 11.89 m^2

Total structural load due to wood = $0.85 \text{ kN/m}^2 + 0.363 \text{ kN/m}^2 = 1.21 \text{ kN/m}^2$

Calculated on February 14, 2013 by Jean Gibbons

Appendix B: Design Calculations

Premier Engineering Consultants Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, NL, A1B 3X5 PremierEngineering@live.ca

B.1: Decking and Joists

First & Second Floor Slabs

P-3615 Composite

Type 22 nominal thickness = 0.76 mm design thickness = 0.762 mm Overall depth = 37.4 mm weight = 8.5 kg/m² center of gravity = 22.5 mm

Slab Thickness = 90mm Triple span: max. unshored tength = 1980 mm self weight = 1.62 kPa Comp. moment of inertia = 3.917×10^6 mm⁴

2.4 48 kPa ~ 12 = 1.5 2.4 3.6 3.6 3. LLP = 1.5.(4.8) = 7.2 KPa

> WS= LLF + DLF $= 3.6 \pm 4.0 = 7.6 \text{ kPa}$

Assume span length = 1500 mm Wr= 20 kPa > WF .: Oh?

 $\Delta = 5\omega l^4 = 5(2.4)(1500)^4 = 0.2 mm$ 384 Es Jcomp 384 (200 000) (3.917 × 106)

Lallow = L = 1500 = 42mm > 0.2 mm .: Ok 360 360

Section modulus: M+ = 9529 mm3 $M^{-} = 10081 \text{ mm}^{3}$ Moment of inertia = 202 228 mm⁴ Steel Area = 1016 mm²

Dead Load: 3.17 KPa ×DL= 1.25 DLF= 1.25(3.17) = 4.0 kPg

Bury

Since A is so small we will try a lorger span: Ossume span length = 1800 mm Wr = 18.90 kPa > Wr = 7.6 kPa : 0k! $\Delta = 5 \omega l^{4} = 5 (2.4) (1800)^{4} = 0.42 \text{ mm}$ $384 E_{5} T_{comp} = 384 (200000) (3.917 \times 10^{6})$ Lallow = L = 1800 = 5.0 mm 360 360 Janow >A : Oh! Since A is so small we will try a larger span again: Assume span length = 1950 mm Wr= 15.99 > Wr= 7.6 kPa : Ok! $\Delta = \frac{5 \omega l^4}{384 E_5 I_{comp}} = \frac{5(2.4)(1950)^4}{384 (200 000)(3.917 \times 10^6)} = 0.58 \text{ mm}$ Acilow = L = 1950 = 5.42 mm > A ... Ok? 360 360 (2)

First Floor

Ljoist span		n fin de la manage de activitat en la companya de la companya companya companya de la companya de la companya
Live Lond	Dond Load	and standing of the only of the standard states and states and states and states and states and states and state
2.4 kPb	3.571.00	na na mana ana bana ana ana ana ana ana ana ana
$\alpha = 1.5$	5.5 T KPA	
LL = 1.5(2.4) = 3.6 kPa	DLF=1.25(3.57)=4.5KF	à
Span between joists = 1800 r	ົກກ	
Service Load	Factored load	
-s = LL × span + DL × span	LE= (LLE + DLE) SDAN	
= 2.4 × 1.8 + 3.57 × 1.8	= (3.6 + 4.5) 1.8	
= 10.75 KN/m	= 14.6 kN/m	
Loads an	re too High.	
Span between joists = 1500 r	nm	
Service Load	Factored load	
-s = span (LL + DL)	LF= (LLF +DLF) Spon	
= 1.5 (2.4+3.57)	= (3.6+4.5) 1.5	
= 9 kN/m	= 12.1 kN/m	
loist depth = 700mm		
		a un constant de la grapa de la Francisca de Las cancieros en la constant de la seconda de la constant de la c
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(GL B.1 to C, 3 to 4) Joists - Spon = 3m setCL A toB, 7.5 to 8.0) se Dead Load Live Load 24 kPa 3.57 kPa QDL=1.25 X11=1.5 LLF= 1.5(2.4)= 3.6 kPa DLF= 1.25(3.57) = 4.5 kPa For span between joists = 1800 mm Service Load Factored Load Ls=(LL + DL)span LF = (LLF + DL F) Spon = (2.4 + 3.57) 1.8 = (3.6 +4.5) 1.8 Joist depth=250.: between joists For span between joists = 32,500 mm Service Load Factored Load Ls= (LL+DL) span LF= (LLF+DLF) span = (2.4+3.57)1.95 = (3.6+4.5) 1.95 = 11.64 kN/m = 15.8KN/m Joist depth = 250 mm

Live Load	Dead Load:
2.4 kPa	3.57KDa
a11 = 1.5	x=1.25
$LL_F = 1.5(2.4) = 3.6 \text{ kPa}$	DL == 1.25 (3.57) = 4.5k Pa
Span between joists = 1	950mm
Service Load	Factored Load
$L_{s} = (2.4 + 3.57)1.95$	LF= (3.6+4.5) 1.95
= 11.64 kPa	= 15.8 KN/m
Joist depth = 400mm	
Joists - Span = 10m (	(GL C toF, 4.0 to 8.0)
LLF = 3.6 kPa (as calc. above)	LL= 2.4 kPa
DLF= 4.5kPa (as calc. above).	DL = 3.57 kPa
Span between joists = 150	20 mm
Service Load:	Factored Load:
$L_{s} = (2.4 + 3.57) (1.5)$	$L_{F} = (3.6 + 4.5)(1.5)$
= 8.96 kNlm	- 12.15 kN/m
Joist depth = 750 mm	

Second Floor

Joist - Span 9m (GLA to C, 4 to 7.5)

>as per first floor calculations

Ls = 9 KN/m ] Joist depth = 700 mm

Joist - Span 3m (GL CtoF, 4 to 8)  $\Rightarrow$  QS per first floor calculations Ls = 11.64 kN/m Juist depth = 750 mm LF = 15.8 kN/m

Joist - Span 10m (GL Cto D, 3to4 + GL A to B, 7.5 to 8.5) > as per first floor calculations Ls = 11. G4 KN/m ] Joist depth = 400 mm LE = 15.8 KN/m

Joist · Span 10m (GL C to F, 4 to 8) > as per first flor ealculations Ls = 8.96 kNlm ]. Joist depth = 750 mm LF = 12.15 KNlm

 $\frac{\text{Service Loads}}{\text{Ls} = (24 + 3.57)(1.8 \text{ m}) = 11 \text{ kN/m}}$  Joish depth = G50 mm

Factored Load: LF= (3.6+4.5) (1.8) = 14.5 KN/m

Hilrof

# Second Floor Lower Roof Design mposite (Patio)

P-3615 Composite

# Type 22

nominal thickness = 0.76mm	Section Modulus: M+=9529mm3
design thickness = 0,762mm	$M^{-} =  U O 8 _{m}m^{3}$
overall depth = 37. 4mm	Moment of Inertia = 202 228mm
weight = $8.5 \text{kg/m}^2$	Steel Area = 1016mm ²
center of gravity=22.5mm	

Slab_Thickness=90mm
Iriple Span:
max. unshored span = 1980mm
self weight = 1.62 KPa
Comp. moment of inertia= 3.917 × 10° mm
Show AH
Live Load Vegal Load
5,3 ktg Orrsktg
$\Delta SL = 1.5$ $\Delta DL = 1.25$
$5L_{F} = 1.5(S,3)$ $PL_{F} = 1.25(O,75)$
$= 7.95 k P_a = 0.94 k P_a$
WF = DLF + DLF
= 7.95  KPa + 0.94  KPa = 8.84  KPa
Assure Spin Length = 1500mm
Wr-LUNTA ZWE- , UR
$\Lambda = 58^{4} - 5(5.3)(1500)^{4} - 66665.$
$384 \text{ Est come}$ $384 (200 \text{ cm})(3.917 \times 10^6)$ $0.45 \text{ mm}$
Dallow = L = 1500 = 4.2mm > 0.45mm -: OK Small So try longer Spin
360 360
Assume San 1 each - 1950mm
wich = 15, 99 KPa Swift OF Choose Span = 1800m to match
Up with (FLA.2. to D. 2. 2 to 3
$\Delta = 5 \cup 2^{\prime \prime} = 5(5:3)(1950)^{\prime \prime} = 1.27mm$
384 Es Icomp 384(20000)(3.917×106)
$\lambda_{1} = (1 + 950 - 6 + 2)$
$\frac{1}{2(n)} = \frac{1}{2(n)} = 1$
360 200

Second Floor Lower Roof Joist Design GLA.Z to D.Z, 1 to 2 Span=7m

 $\frac{5.00 \text{ Load}}{5.3 \text{ RPa}}$ SLF = 7.95 KPg  $\frac{\text{Dead Load}}{1.05 \text{ kPa}}$   $\frac{1.05 \text{ kPa}}{\text{DLF}=1.31 \text{ kPa}}$ 

Service Load Ls = (5.3+1.05)(1.8m) = 11.43KN/m Factored Load LF= (7.95+1.31)(1.8m) = 16,67KN/m

Joist Depth = 650mm

Upper Pool Deck P-3615

Type 22 Nominal thickness = 0.76 mm design thickness = 0.762 mm overall depth = 37.4 mm weight = 8.5 kg/m³ center of gravity = 22.5 mm

Triple Span max unshored span = 1829 mm

Dead Load \$36.	Snow Load
0.75 kPa	3.02 kPa
$\alpha_{p} = 1.25$	$\alpha_{SL} = 1.5$
$DL_F = 1.25(0.75)$	$SL_F = 1.5(3.02)$
= 0.94	= 4.53 kPa

 $F = W_F = DL_F + SL_F = 0.94 + 4.53 = 5.47 kPa$  $F_R = 6.25 kPa > F :: 0k!$ 

D = SL + DL = 0.75 + 3.02 = 3.77 kPa $D_R = 4.25 kPa > D :: Ok!$ 

 $\Delta_{a10w} = L = 1800 = 5 \text{ mm}$ 360 360

 $\Delta = \frac{5(0.66)Dl^{4}}{384 E_{s} I} = \frac{5(0.66)(3.77)(1800)^{4}}{384 (200 000)(202 228)} = 8.4 \text{ mm} \quad 7 \text{ A allow} \quad Not oh?$ 

Section modulus : M+ = 9529 mm3

Moment of intertia = 202 228 mm4

Steel area = 1016 mm²

 $M = 10.081 \text{ mm}^3$ 

Hilroy

<u>Span 1500</u>  $\Delta a = L = 1500 = 4.2 \text{ mm}$ 360 360  $\Delta = 5(0.66)(3.77)(1500)^{4} = 4.1 \text{ mm } 4 \text{ Aginow : Oh}^{1}$ 384 (200 000) (202 228) FR = 8.9 kPa > F Oh! (cale on previous pg.) DR = 7.35 KPa > D (cale on previous pg.) ... Ok! Upper Koot Steel Joist Design (Roof with parapet) GL AtoC, 4 to 8 & GL C to F, 4 to 8 Span = 9m Snow Load Dead Load 3.02 kPa 1.05 kPa SLF = 4.53kPa DLF= 1.31 kPa Service Loads Factored Loads  $L_{s} = (3.02 + 1.05)(1.5)$ LF = (4.53 +1.31) (1.5) = G.11 kN= 8.8 kN/m Joist depth = 650 mm

tract

wood decking March 5th, 2013 DL - 0.75 KPg 5L - 3.02KPa servicivility SL - 2.72 KP a Span - 1.6 m day, untreated deflection limit: L/240 based on SL. 4180 based on total load Wf= 1.25 x .75 + 1.5 + 3.02 = 5.47 KPa  $\omega_L = 2.72 \text{ kpa}$ W = 0.75 + 2.72 = 3.47 KPa Wfp = 9:36 KPa > 5.47 KPa .. OK! WAR = 4.34 KPa > 2.72 KPa for L/240 deflection OK! WAR = 4.34 X1 33 = 5.77 KPa > 3.47 KPa for L/180 defk-. Use 38 mm thickness commercial grade Douglas-Fin-Lanch 5pan = 3.2mWfp = 7.39 Kpa 5.47 KPa ... OKI. WAR = 3.04 Kpa 72.72 Kpa for 4240 deflection . . ok! WAR = 3.04 × 1.33 = 4.04 KPa > 3.47 KPa for 4/180 deflection Use 64 mm thickness commercial grade Douglas - Fip - Lanch



Dead Load = 1,96 KPg Snow Load = 3.02kpg

Panel Characteristics

SLT3 - 3 layers - Depth=99mm

- Inner Lans(mm) = inner lans 35

- Outer Lans (mm) = outer lans 32

- Weight  $\left(\frac{1b}{F_{12}}\right) = 10.5$ 

- Weight (Ky) = 51.2

Maximum Panel Size = 3.0m X12.2m

Maximum Planed Panel Size= 2.4m × 12.2m

Max Thickness = 309mm

Production widths = 2. 4m and 3. Un

Panel Edges = 14" chamfer on long edges Moisture Content = 120/0 (+/-20/0)

Double Spun

CrossLam Roof Panel Loud Table = 4050mm Max Panel Long th = 4.05m (btw (L of supports) Thickness = 32mm (outer)

	Wood Beam Design	
	DL = 2.89  kPa	
	LL = SL = 3.02  kPa	
	(Span = 1.6m	
t valid	load on beam due to tributary	area:
	( due to dead load: 1.25 (2.89 kpa)	G(m) = 7.25  kN/m (1.Gm) = 5.78  kN/m
	New Span = 3.2 m (this is Pa	line wood de l
1	Load on beam due to tributary or	en:
	due to snow load = 1.5(3.02k	Pa)(3, 2m) = 145 I. M/m
	due to dead load = 1.25 (2.89)	(3,2m) = 11.56 kallm
		, (
1		
	Span for CLT beam root = 4.05	m
	Jpan for CLT beam root = 4.05 Load on beam due to tribut	m ary area:
	Jpan for CLT beams roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0	m ary area: 2 k Pa (4.05m) = 18.35 k N lm
	Jpan for CLT beams roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8	m ary area: 2  kPa(4.05m) = 18.35 kN/m (9  kPa)(4.05m) = 14.63 kN/m
	Jpan for CLT beams roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8	m ary area: 2  kPa(4.05 m) = 18.35 kNlm 19  kPa(4.05 m) = 14.63 kNlm
	Jpan for CLT beams roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8	m ary area: 2  kPa(4.05m) = 18.35 kNlm 19  kPa(4.05m) = 14.63 kNlm
	Den for CLT beam roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8	m ary area: 2 kPa) (4.05m) = 18.35kNlm 19 kPa) (4.05m) = 14.63kNlm Beam Section Selection;
	Deam for CLT beam roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 > Beam Section Selection:	m ary area: 2  kPa(4.05m) = 18.35 kNlm 19  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$
	Deam for CLT beam root = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 Deam Section Selection: 130×760 -> 0.0988m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 19  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 Deam Section Selection: 130×760 $\Rightarrow$ 0.0988m ² 175×532 $\Rightarrow$ 0.0931m ² $\leftarrow$ choose	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0) due to dead load = 1.25 (2.8) > Beam Section Selection: 130×760 => 0.0988m ² 175×532 => 0.0931m ² <= choose 215×456 => 0.098m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0) due to dead load = 1.25 (2.8) Deam Section Selection: $130 \times 760 \implies 0.0988 m^2$ $175 \times 532 \implies 0.0931 m^2 \leftarrow choose$ $215 \times 456 \implies 0.098 m^2$ $315 \times 418 \implies 0.132 m^2$	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$ $315 \times 456 \Rightarrow 0.144 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0) due to dead load = 1.25 (2.8) Deam Section Selection: 130×760 $\Rightarrow$ 0.0988m ² 175×532 $\Rightarrow$ 0.0931m ² $\leftarrow$ choose 215×456 $\Rightarrow$ 0.098m ² 315×418 $\Rightarrow$ 0.132m ² 365×380 $\Rightarrow$ 0.139m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$ $315 \times 456 \Rightarrow 0.144 \text{ m}^2$ $365 \times 418 \Rightarrow 0.153 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 Deam Section Selection: 130×760 $\Rightarrow$ 0.0988m ² 175×532 $\Rightarrow$ 0.0931m ² $\leftarrow$ choose 215×456 $\Rightarrow$ 0.098m ² 315×418 $\Rightarrow$ 0.132m ² 365×380 $\Rightarrow$ 0.139m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$ $315 \times 456 \Rightarrow 0.144 \text{ m}^2$ $365 \times 418 \Rightarrow 0.153 \text{ m}^2$
	Span for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 > Beam Section Selection: 130×760 $\Rightarrow$ 0.0988m ² 175×532 $\Rightarrow$ 0.0931m ² $\leftarrow$ choose 215×456 $\Rightarrow$ 0.098m ² 315×418 $\Rightarrow$ 0.132m ² 365×380 $\Rightarrow$ 0.139m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 39  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$ $315 \times 456 \Rightarrow 0.144 \text{ m}^2$ $365 \times 418 \Rightarrow 0.153 \text{ m}^2$

Depute: 0		
Bearing: 217.94		
		<b>A</b>
112.07		217.04
H13.57		k1/.94
SHEAR [kN]		
LC #2: 1.25D + (1.0)1.55		
86.05		58.7
-Vf max: -135.6		
No critical point - glulam design is based on shea	r volume.	
BENDING [ kN-m ]		
Factored loads	170.21	
Load Combination #4: 1.25D + (1.0)1.5S (pattern	: Ss)	
+Mf max: 170.21		
Load Combination \$2: 1.25D + (1.0) 1.55		
-Mf max: -92(22)		1 2
TOTAL DEFLECTION [mm]		
Load Combination #4: 1.0D + (0.9)1.0S (pattern:	Ss)	12 7
Critical Live: -9.3		-7.2 -10.0 -12
Critical Total: -14.3		-1.3 -4.3
Critical Perm: 0.0 6.9		5.9
	15.6 14.5	
	18.4	

		orks [®]	COMP	ANY	PROJECT			
				Mar. 6,	2013 00:15	Beam	1	
		Des	ign Check C WoodWork	alculat s Sizer 8	ion Sheet			
.oads:								
Load	ту	npe	Distribution	n Pat- tern	Location Start	[m] End	Magnitude Start Er	Unit
Dead Load Snow Load Self-weight	Dea Sno Dea	id )W id	Full UDL Full UDL Full UDL	No Yes No			11.56 14.50 0.45	kN/m kN/m kN/m
/laximum Rea	actions	s (kN), Bearin	g Resistanc	es (kN)	and Bear	ing Le	ngths (mm) :	
			-	- 8.92	m ———	-		
	¥ 0					(	5.62	8.86 m
Unfactored: Dead Snow	35.86 46.09	5				7	71.19 35.97	
Factored: Total Bearing:	113.97	,				21	17.94	
Resistance Beam	131.06	5				25	50.63	
Supports Anal/Des	113.97	7				2:	17.94	
Beam Support Load comb	0.87	7 D					0.87 1.00 #2	
Length Min req'd	110 116**	- 6 *					222 222**	
KB min KB support	1.00	0					1.00	
Kd fcp sup Kzcp sup	1.00	D D					1.00 7.00 1.00	
**Minimum bear	ring lengt	th governed by th	e required width	of the su	pporting men	nber.		
		Glul: Sup	<b>am-E, D. Fir-L</b> ports: All - Timbe Total lengt	<b>, 20f-E,</b> er Beam, h: 8.918	<b>175x532 mi</b> D.Fir-L No.2 m;	m		
	sistana	Lateral sup	port: top= at sup	oports, bo	ottom= at sup	oports;		
Criterion	Ar	nalysis Valu	e Design	Value	Analysi	s/Des:	ign	
Shear (Case Shear (Case Moment (+)	e 1) Vi e 2)	f @d = 111.90 Wf = 325.60 Mf = 170.20	6 Vr = 8 Vr = 1 Mr =	111.72 402.97 178.34	Wf/V Mf/M	r = 0 r = 0	.81	
Moment(-) Deflection: Interior Pe	erm	Mf = 92.5' 8.0 = L/82	/ Mr =	142.64 L/360	Mf/M	1r = 0	. 65	
L: Tot	tal 1	L0.3 = L/639 18.4 = L/360	9 18.4 = 0 36.8 =	L/360 L/180		0	.56	

Cantil.	Perm	-5.1 =	L/440	12.4 =	= L/180			0.41		
	Live	-9.3 =	L/241	12.4 =	= L/180			0.74		
	Total	-14.4 =	L/156	24.9 =	= L/90			0.58		
Additional Data:										
FACTORS	f/F()		<b>KH</b>	87	кт	КТ	KS	KN	CT	TC#
FW	2 0	1 00	1 00	1 000	KL -	1 00	1 00	-	4 839	#2
Fb+	25.6	1 00	1 00	1 000	0 938	1 00	1 00		1.005	π2 #4
Fb-	19.2	1 00	1 00	1 000	1 000	1 00	1 00	_	_	#1 #2
Fcp	7.0	1.00	-	1.150	-	1.00	1.00	_	_	#_ #_
Es	12400	_	_		-	1.00	1.00	_	_	#4
CRITICAL LO	AD COM	BINATIONS								
Shear	: LC #	2 = 1.25	5D + (1.	0)1.55						
Moment(+)	: LC #	4 = 1.25	5D + (1.	0)1.5S (	(pattern:	Ss)				
Moment (-)	: LC #	\$2 = 1.2	5D + (1.	0)1.55	-					
Deflectio	on: LC #	ŧ1 = 1.0I	D (perm	anent)						
	LC #4 = 1.0D + $(0.9)$ 1.0S (pattern: Ss) (live)									
	LC ‡	\$4 = 1.0I	D + (0.9	)1.0S (p	attern:	Ss) (t	otal)			
Load Type	s: D=de	ead W=wir	nd S=sn	ow H=ea	arth, grou	ndwater	E=ea:	rthquake		
	L=li	ive (use, od	ccupancy	) Ls=li	ive (stora	ge,equi	pment)	f=fire		
Load Patt	erns: s	8=S/2 L=I	L+Ls _=	no patte	ern load	in this	s span			
All Load	Combina	ations (LO	Cs) are	listed i	in the An	alysis	output			
CALCULATIO	NS:									
Shear Vr:	Case	2 (086-09	9 6.5.7.	2.1a) us	ed; Wf	= sum c	of all 1	loads.		
Deflectio	on: EI	= 272286	e06 kN-m	m2						
"Live" de	flectio	on = Defle	ection f	rom all	non-dead	loads	(live,	wind, sn	IOW)	
Decise No.	4									

#### Design Notes:

1. WoodWorks analysis and design are in accordance with the 2010 National Building Code of Canada (NBC) and the Sept. 2010 reprint of the CSA-O86-09 Engineering Design in Wood Standard, which includes Update No.1.
2. Please verify that the default deflection limits are appropriate for your application.
3. EX grades should be considered when negative bending moment exceeds 75% of the negative bending capacity.
4. BEAMS require restraint against lateral displacement and rotation at points of bearing

WoodWorks SIZER - Software for Wood Design Sizer 8.2 5 Mar,2013 20:11 Untitled COMPANY PROJECT 1 DESIGN RESULTS - CSA-086-09 Beam DESIGN DATA: Material: Glulam-E Lateral support: top= at supports, bottom= at supports; Total length: 8.86 [m] _____ _____ LOADS: (force=kN, pressure=kN/m2, udl=kN/m, location=m ) >>Self-weight automatically included<< _____ _____ _____ | Type |Distribution|Pat-| Location | Magnitude |Unit | | tern| Start End | Start End | Load 1 Dead Load Dead Full UDL No Snow Load Snow Full UDL Yes 11.56 kN/m Yes kN/m 14.50 _____ SUGGESTED SECTIONS that PASSED the CODE CHECK: ..... |Species Group | bxd | Axial | Bending| Comb'd | Shear | Disp./ | Grade | mm | Pf/Pr | Mf/Mr | | Vf/Vr | Allow. D. Fir-L 0.99 1 20f-E 130x760 0.77 0.34 20f-E 0.50 0.74 175x532 0.95 2 0.50 0.96 20f-E 215x456 0.99 3 315x418 0.85 20f-E 0.81 4 0.39 5 20f-E 365x380 0.87 0.38 0.98 >>For more detailed output, select a Suggested Section from the Data Bar.<< _____ _____ DESIGN NOTES: 1. WoodWorks analysis and design are in accordance with the 2010 National Building

Code of Canada (NBC) and the Sept. 2010 reprint of the CSA-086-09 Engineering Design in Wood Standard, which includes Update No.1.

Please verify that the default deflection limits are appropriate for your application.

 EX grades should be considered when negative bending moment exceeds 75% of the negative bending capacity.

 BEAMS require restraint against lateral displacement and rotation at points of bearing

	Wood Beam Design	
	DL = 2.89  kPa	
	LL = SL = 3.02  kPa	
	(Span = 1.6m	
t valid	load on beam due to tributary	area:
	( due to dead load: 1.25 (2.89 kpa)	G(m) = 7.25  kN/m (1.Gm) = 5.78  kN/m
	New Span = 3.2 m (this is Pa	line wood de l
1	Load on beam due to tributary or	en:
	due to snow load = 1.5(3.02k	Pa)(3, 2m) = 145 I. M/m
	due to dead load = 1.25 (2.89)	(3,2m) = 11.56 kallm
		, (
1		
	Span for CLT beam root = 4.05	m
	Jpan for CLT beam root = 4.05 Load on beam due to tribut	m ary area:
	Jpan for CLT beams roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0	m ary area: 2 k Pa (4.05m) = 18.35 k N lm
	Jpan for CLT beams roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8	m ary area: 2  kPa(4.05m) = 18.35 kN/m (9  kPa)(4.05m) = 14.63 kN/m
	Jpan for CLT beams roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8	m ary area: 2  kPa(4.05 m) = 18.35 kNlm 19  kPa(4.05 m) = 14.63 kNlm
	Jpan for CLT beams roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8	m ary area: 2  kPa(4.05m) = 18.35 kNlm 19  kPa(4.05m) = 14.63 kNlm
	Den for CLT beam roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8	m ary area: 2 kPa) (4.05m) = 18.35kNlm 19 kPa) (4.05m) = 14.63kNlm Beam Section Selection;
	Deam for CLT beam roof = 4.05 Load on beam due to tribut due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 > Beam Section Selection:	m ary area: 2  kPa(4.05m) = 18.35 kNlm 19  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$
	Deam for CLT beam root = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 Deam Section Selection: 130×760 -> 0.0988m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 19  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 Deam Section Selection: 130×760 $\Rightarrow$ 0.0988m ² 175×532 $\Rightarrow$ 0.0931m ² $\leftarrow$ choose	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0) due to dead load = 1.25 (2.8) > Beam Section Selection: 130×760 => 0.0988m ² 175×532 => 0.0931m ² <= choose 215×456 => 0.098m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0) due to dead load = 1.25 (2.8) Deam Section Selection: $130 \times 760 \implies 0.0988 m^2$ $175 \times 532 \implies 0.0931 m^2 \leftarrow choose$ $215 \times 456 \implies 0.098 m^2$ $315 \times 418 \implies 0.132 m^2$	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$ $315 \times 456 \Rightarrow 0.144 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0) due to dead load = 1.25 (2.8) Deam Section Selection: 130×760 $\Rightarrow$ 0.0988m ² 175×532 $\Rightarrow$ 0.0931m ² $\leftarrow$ choose 215×456 $\Rightarrow$ 0.098m ² 315×418 $\Rightarrow$ 0.132m ² 365×380 $\Rightarrow$ 0.139m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$ $315 \times 456 \Rightarrow 0.144 \text{ m}^2$ $365 \times 418 \Rightarrow 0.153 \text{ m}^2$
	Deam for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 Deam Section Selection: 130×760 $\Rightarrow$ 0.0988m ² 175×532 $\Rightarrow$ 0.0931m ² $\leftarrow$ choose 215×456 $\Rightarrow$ 0.098m ² 315×418 $\Rightarrow$ 0.132m ² 365×380 $\Rightarrow$ 0.139m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 3  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$ $315 \times 456 \Rightarrow 0.144 \text{ m}^2$ $365 \times 418 \Rightarrow 0.153 \text{ m}^2$
	Span for CLT beam roof = 4.05 Load on beam due to tribute due to snow load = 1.5 (3.0 due to dead load = 1.25 (2.8 > Beam Section Selection: 130×760 $\Rightarrow$ 0.0988m ² 175×532 $\Rightarrow$ 0.0931m ² $\leftarrow$ choose 215×456 $\Rightarrow$ 0.098m ² 315×418 $\Rightarrow$ 0.132m ² 365×380 $\Rightarrow$ 0.139m ²	m ary area: 2  kPa(4.05m) = 18.35 kNlm 39  kPa(4.05m) = 14.63 kNlm Beam Section Selection: $130 \times 950 \Rightarrow 0.124 \text{ m}^2$ $175 \times 608 \Rightarrow 0.106 \text{ m}^2$ $\Rightarrow 215 \times 532 \Rightarrow 0.114 \text{ m}^2$ $265 \times 494 \Rightarrow 0.131 \text{ m}^2$ $315 \times 456 \Rightarrow 0.144 \text{ m}^2$ $365 \times 418 \Rightarrow 0.153 \text{ m}^2$

REACTION [kN] Maximum Uplif:: 0 Bearing: 275.69	ANALYSIS DIAGRAMS (known section - includes self-weight)	
<b>A</b>	2	
144.25		275.69
SHEAR [kN]		
LC #2: 1.25D + (1.0)1.5S 108.77		74.4
-Vf max: -171 53		0
		<u> </u>
No critical point - glulam design is based on shear volume.		
BENDING [ kN-m ]	215 31	
Factored loads		
Load Combination #4: 1.25D + (1.0)1.55 (pattern: 55)		
Load Combination (\$2: 1.250 + (1.0)1.55		
-Mf max: -116.66		416.66
TOTAL DEFLECTION [mm]		
Load Combination #4: 1.0D + (0.9)1.0S (pattern: Ss)		12.0
Critical Live: -9.5		-7.4 -10.2 -13.
Critical Total: -14.7		-1.3 -1.4
Critical Perm: 0.2 7.1	6.1	<u>\</u>
16.0	18.9 14.9 2	-



Mar. 6, 2013 00:50 Beam1

#### **Design Check Calculation Sheet**

COMPANY

WoodWorks Sizer 8.2

#### Loads:

Load	Туре	Distribution	Pat-	Location	[m ]	Magnitude		Unit
			tern	Start	End	Start	End	
Dead Load	Dead	Full UDL	No			14.63		kN/m
Snow Load	Snow	Full UDL	Yes			18.35		kN/m
Self-weight	Dead	Full UDL	No			0.55		kN/m

#### Maximum Reactions (kN), Bearing Resistances (kN) and Bearing Lengths (mm) :

		8.92 m		
	졎 0		চ্⊴ 6.62	8.86 m
Unfactored:				
Dead	45.37		90.00	
Snow	58.36		108.80	
Factored:				 
Total	144.25		275.69	
Bearing:				 
Resistance				
Beam	165.89		317.04	
Supports	144.25		275.69	
Anal/Des				
Beam	0.87		0.87	

Support 1 Load comb Length 7 Min req'd 127 KB 1 KB 1 KB min 1 KB support 1 Kd 1 fcp sup 7 Kzcp sup 1 **Minimum beging le	.00 #4 120 0** .00 .00 .00 .00 .00	quired width of the su	2 populing member	1.00 #2 229 29** 1.00 1.00 1.00 7.00 1.00						
Glulam-E, D. Fir-L, 20f-E, 215x532 mm Supports: All - Timber Beam, D.Fir-L No.2 Total length: 8.92 m; Lateral support: top= at supports, bottom= at supports;										
Force vs. Resista	nce and Deflection	n using CSA-O86-09:	(kN, kN-m, or mn	n )						
Criterion	Analysis Value	Design Value	Analysis/Desi	.gn						
Shear (Case 1)	Vf @d = 141.47	Vr = 137.26								
Shear (Case 2)	Wf = 411.98	Vr = 477.07	Wf/Vr = 0.	86						
Moment (+)	Mf = 215.31	Mr = 233.66	Mf/Mr = 0.	92						
Moment (-)	Mf = 117.09	Mr = 175.25	Mf/Mr = 0.	67						
Deflection:										
Interior Perm	8.2 = L/803	18.4 = L/360	0.	45						
Live	10.6 = L/622	18.4 = L/360	0.	58						
Total	18.9 = L/351	36.8 = L/180	0.	51						
Cantil. Perm	-5.2 = L/428	12.4 = L/180	0.	42						
Live	-9.5 = L/235	12.4 = L/180	0.	76						
Total	-14.7 = L/151	24.9 = L/90	0.	59						
Additional Data:	•									
FACTORS: f/E()	MPa) KD KH	KZ KL	KT KS	KN CV	LC#					
Fv 2.0	1.00 1.00	1.000 -	1.00 1.00	- 4.839	#2					
Fb+ 25.6	1.00 1.00	1.000 1.000	1.00 1.00		#4					
Fb- 19.2	1.00 1.00	1.000 1.000	1.00 1.00		#2					
Fcp 7.0		1.150 -	1.00 1.00		#-					
Es 12400			1.00 1.00		#4					
CRITICAL LOAD COM	BINATIONS.									
Shear : LC	#2 = 1.25D + (1.0)	0)1.55								
Moment(+) : LC	#4 = 1.25D + (1.0)	0)1.55 (pattern:	Ss)							
Moment(-) : LC	#2 = 1.25D + (1.0)	0)1.55	22)							
Deflection: LC	#1 = 1.00 (nerm)	anent)								
LC	#4 = 1.0D + (0.9)	1.05 (pattern.	Ss) (live)							
LC	#4 = 1.0D + (0.9)	)1.05 (pattern:	Ss) (total)							
Load Types Ded	ead W=wind S=en/	ow H=earth grou	ndwater F=eart	hquake						
Loud Types, D-do	ive (use, occupancy)	) Ls=live(stora	ge.equipment)	f=fire						
Load Patterns:	s=S/2 L=L+Ls =	no pattern load	in this span							
All Load Combine	ations (LCs) are	listed in the An	alvais output							
CALCULATIONS:	2020no (200) are.	1100cd in one An	arioro odopao							
Shear Vr. Case	2 (086-09 6 5 7	2.1a) used: Wf	= sum of all lo	ada.						
Deflection: FT	= 33451e06 kN-m	m2	Jum Of all IU							
"Live" deflection	on = Deflection f:	rom all non-dead	loads (live, w	ind, snow)						

#### Design Notes:

1. WoodWorks analysis and design are in accordance with the 2010 National Building Code of Canada (NBC) and the Sept. 2010 reprint of the CSA-O86-09 Engineering Design in Wood Standard, which includes Update No.1. Please verify that the default deflection limits are appropriate for your application.
 EX grades should be considered when negative bending moment exceeds 75% of the negative bending capacity.
 BEAMS require restraint against lateral displacement and rotation at points of bearing

	WoodW	orks	SIZER	<ul> <li>Softwa</li> </ul>	re for W	ood Desi	gn		
Unti	itled		Sizer 8.2	2		6 Ma	r,2013 0	:42	
	CO	MPANY	I		PR	OJECT			
		DESIGN	RESULTS -	- CSA-086	-09				
Bean	n 								
DESI	IGN DATA: Material: Lateral sup Total lengt	Glula port: top= h: 8.86	um-E at support [m ]	s, botto	m= at su	pports;			
LOAI	DS: (force=kN, ) >>Sel	pressure=kN f-weight au	<pre>I/m2, udl=} tomatical</pre>	xN/m, loca Ly include	tion=m ) d<<				
Load	i   Ty	pe	Distribut 	ion Pat-   tern	Locati Start	on   End	Magnit Start	ude End	Unit 
Dead Snow	i Load Dea V Load Sno	а w	Full UDL Full UDL	No Yes		1-	14.63 18.35		kN/m kN/m
SUGG	GESTED SECTIONS	that PASSE	D the CODE	CHECK:					
   	Species Group Grade	bxd   mm	Axial   Pf/Pr	Bending  Mf/Mr	Comb'd	Shear   Vf/Vr	Disp./	r	
1 2 3 4	D. Fir-L 20f-E 20f-E 20f-E 20f-E 20f-E	130x95 175x60 215x53 265x49	0 8 9 9 9 4	1.00 0.94 0.92 0.87		0.80 0.51 0.51 0.46	0.22 0.63 0.76 0.78	:	
5 6 >>Fo	20f-E 20f-E or more detaile	315x45 365x41 d output, s	6 .8 select a Su	0.86 0.91 aggested S	ection f	0.44 0.42 rom the	0.83 0.93 Data Bar	; ; ;.<<	
DESI	IGN NOTES:								
1. 2.	WoodWorks anal Code of Canada Design in Wood Please verify for your appli	ysis and de (NBC) and Standard, that the de cation.	sign are i the Sept. which incl fault defl	in accorda 2010 repr Ludes Upda Lection li	nce with int of t te No.1. mits are	the 201 he CSA-O appropr	O Nation 86-09 En iate	al Bu ginee	====== ilding ring

 EX grades should be considered when negative bending moment exceeds 75% of the negative bending capacity.

 BEAMS require restraint against lateral displacement and rotation at points of bearing



### **B.2: Beams and Channels**





	Si	mply S	upportec	l Bea	am Sizir	ng For R	loof	
	Project	t: Gibraltar (	Office Building			Project #:	13.001	
Design I	Engineer	c: AS				Date:	16/03/13	
Che	cked By	/: AH						
Basic Data:	246				0 : 11:	A 1 D . t		
Beam ID: E	546		XX7' 1.1 XX7		Gridline	es: A.1 Betwee	en 3 & 4	
Span: L =	3.443	m	Width: $W =$	2.65	m	E =	200,00	10 MPa
SL =	3.02	kPa	$\alpha_{\rm SL} =$	1.5				
DL =	1.96	kPa	$\alpha_{\rm DL}$ =	1.25				
Loading:								
USL =	8.00	kN/m	UDL =	5.19	kN/m	$w_{\rm f}$ =	18.50	kN/m
Shear:			Moment:			Deflection	Allowed:	
$R_f = V_f =$	31.84	kN	$M_{\rm f}$ =	27.41	kNm	$\Delta_{\rm allow} =$	9.56	mm
			-					
Determine Sect	ion:							
I _{req} =	007	.7E+06	$mm^4$					
*								
Final Design F	rom Ste	el Handbo	ok (Blue Table	es):				
Beam Size:			Shear:			Moment:		
W	200x19		$V_r =$	241	kN	$M_r =$	58	kNm
Moment of Ine	rtia:		_	Nomin	al Mass:			
I _x =	016	.6E+06	mm ⁴	m =	= 19	kg/m		
Fi	nal Be	am Size I	For Gridline	A.1 Be	etween 3 &	4	W20	0x19
			18.50	kN/m				
V	W200x19	9	B46				Note: N	EEDTO
			3.443	m			CHECK F(	OR UPLIFT!
	31.84	4 kN			31.	84 kN		

	Simpl	ly Sup	ported ]	Bear	n Si	zing	For Ro	of	
			<u> </u>				·	·	
	Project: Gi	ibraltar Of	ffice Building				Project #:	13.001	
Design F	Engineer: AS	3					Date:	16/03/13	
Che	cked By: AF	H			<u> </u>				
Desis Deser									
Basic Data:	217	<u> </u>				- midlines	A Retween	1 8.7	
Span: I =	$\frac{41}{4270}$ m	+	Width W/ -	1 37	<u> </u>	fiumes.	F –	$\frac{+ \alpha}{200.000}$	MDo
Span. L –	4.270 III 2.02 I-E			1.5	111		<u>г</u> –	200,000	IVIF a
5L –	<u>Э.02 кі</u> <u>4.05 І-Г</u>	'a	u _{SL} –	1.5					
DL –	1.05 кг	'a	α _{DL} –	1.25					
Logding									
	12.00 kN	т /	UDI –	4 50	1-NT/00		<b>11</b> 7 —	25 53	1 NT /
USL –	13.20 кіл	√/m	UDL –	4.37	KIN / 11	1	w _f –	25.55	KIN / fli
Shear:		ſ	Moment:				Deflection	Allowed:	
$R_c = V_c =$	54.51 kN	J	M _f =	58,19	kNm		$\Delta_{11} =$	11.86	mm
1 1	5 1101 1	<u> </u>	-1	00.17	111 ,111		anow	11.00	111111
Determine Sect	ion:								
I _{req} =	024.1E-	+06 ,	mm ⁴						
τιγ									
Final Design Fr	com Steel H	Iandbook	s (Blue Tables	s):					
Beam Size:		ę	Shear:	/			Moment:		
W3	310x21		$V_r =$	303	kN		$M_r =$	89	kNm
Moment of Iner	tia:		]	Nomin	al Mas	s:	<u> </u>		
I _x =	037.0E-	+06	$mm^4$	=	:	21	kg/m		
			<b>_</b>						
Final Be	am Siz	e For	Gridline	A Be	twee	n 4 &	7	W31	0x21
			Unwinter				· ·		
			25.53 ]	kN/m				Note: N	EED TO
V	W310x21		B47				1	CHEC	K FOR
			4.270 t	m		/		UPI	JFT!
	54.51 kN	J				54.51	kN		

Simply S	upported Be	am Sizing	g For Roof	f	
			<u> </u>		
Project: Gibraltar O	office Building		Project #:	13.001	
Design Engineer: AS			Date:	16/03/13	
Checked By: AH					
Basic Data:	г			~	
Beam ID: <b>B49</b>		Gridlines:	B Between 7.5 &	8	
Span: L = 2.569 m	Width: $W = 4.37$	m	E =	200,000	MPa
SL = 3.02  kPa	$\alpha_{\rm SL} = 1.5$				
DL = 1.05  kPa	$\alpha_{\rm DL} = 1.25$				
Loading:					
USL = 13.20  kN/m	UDL = 4.59	kN/m	w_f =	25.53	kN/m
Shear:	Moment:		Deflection Allow	ved:	
$R_f = V_f = 32.80 \text{ kN}$	$M_{f} = 21.06$	kNm	$\Delta_{\text{allow}} =$	7.14	mm
Determine Section:					
$I_{reg} = 005.2E + 06$	mm ⁴				
- 1			4		
Final Design From Steel Handboo	k (Blue Tables):				
Beam Size:	Shear:		Moment:		
W200x19	V _r = 241	kN	$M_r =$	58	kNm
Moment of Inertia:	Nomin	al Mass:			
$I_x = 016.6E + 06$	$mm^4$ m =	: 19	kg/m		
			8,		
Final Beam Size For	Gridline B Be	tween 7 5	&r 8	W20	0x19
I mai Deam 0120 I or	Official D De			1120	UAI
	25.52 kNI/m			Nister NI	
W/200x19	23.33 KIN/III R49		1	INOTE: IN	EED TO V FOR
WZUUAI	עדע		*		K POK
<i>i</i>   •	2560 m	4	1	[]PI	

	Simply S	Supported	l Bea	ım Siz	ing For	R	oof	
	Project: Gibraltar	Office Building			Projec	t #:	13.001	
Design E	ngineer: AS				D	ate:	16/03/13	
Chee	cked By: AH							
Basia Datas								
Dasic Data:	50			Crid	linear B 5 Bot	11200	n 3 8 1	
Span: I =	3/13 m	Width W/ -	3 776	Giù	mies: D.5 Det	.wee.	200.000	) MD ₂
Span. L –	2.02 1-D-		J.770	111		<u> </u>	200,000	) wira
5L -	5.02 KPa	$u_{SL}$ –	1.5					
DL =	1.96 kPa	$\alpha_{\rm DL}$ =	1.25					
Loading:								
USL =	11.40 kN/m	UDL =	7.40	kN/m	W	$v_{\rm f} =$	26.36	kN/m
Shear:		Moment:			Deflec	tion	Allowed:	
$R_f = V_f =$	45.37 kN	$M_{\rm f}$ =	39.05	kNm	$\Delta_{\rm allo}$	w =	9.56	mm
Determine Secti	on:							
I _{rea} =	010.9E+06	$mm^4$						
1								
Final Design Fr	om Steel Handbo	ook (Blue Table	es):					
Beam Size:		Shear:	/		Mome	nt:		
W2	00x19	$V_r =$	241	kN	M	[, =	58	kNm
Moment of Iner	tia:	-	Nomin	al Mass:		-		
I _x =	016.6E+06	mm ⁴	m =	19	kg/m			
Final Be	am Size Fo	r Gridline	<b>B.5 F</b>	Betwee	n 3 & 4		W200	)x19
		26.36	kN/m				Note: NE	ED TO
W	V200x19	<u>B50</u>					CHECK FO	R UPLIFT!
		3.443	m				CHECKIO	
	45.37 kN			4	45.37 kN			

	Si	mply S	upportec	l Bea	ım Sizin	g For R	loof	
						-		
	Project	t: Gibraltar (	Office Building			Project #:	13.001	
Design I	Engineer	:: AS				Date:	16/03/13	
Che	ecked By	r: AH						
Basic Data:								
Beam ID [.]	351				Gridline	es: C Between	3 & 4	
Span: L =	3.443	m	Width: W =	5.4	m	E =	200.00	)0 MPa
SL =	3.02	kPa	$\alpha_{SI} =$	1.5			,	
DL =	1.96	kPa	$\alpha_{\rm DL} =$	1.25				
			02					
Loading:								
USL =	16.31	kN/m	UDL =	10.58	kN/m	$w_{f} =$	37.69	kN/m
Shear:			Moment:			Deflection	Allowed:	
$R_f = V_f =$	64.89	kN	$M_{\rm f}$ =	55.85	kNm	$\Delta_{\rm allow} =$	9.56	mm
Determine Sect	tion:	<b>(F</b> ) : 0 <b>(</b>	4					
$I_{req} =$	015	.6E+06	$mm^{\intercal}$					
Final Design F	rom Sta	al Handha	ol (Blue Table					
Beam Size:	Iom Ste		Shear:	.8).		Moment:		
W	310x21		$V_r =$	303	kN	$M_r =$	89	kNm
Moment of Ine	rtia:		-	Nomin	al Mass:	-		
I _x =	037	.0E+06	mm ⁴	m =	21	kg/m		
				<u></u>				
Final B	eam S	Size For	r Gridline	C Be	tween 3	& 4	W31	.0x21
			37.69	kN/m			Note: N	FED TO
v	W310x2	1	B51				CHECK FO	DR UPLIFT
		$\uparrow$	3.443	m		$\uparrow$		
	64.89	9 kN			64.8	89 kN		

	Simply	Supported	l Bea	ım Sizir	ng For R	loof	
	Project: Gibraltan	Office Building			Project #:	13.001	
Design E	Ingineer: AS				Date:	16/03/13	
Che	cked By: AH						
Basic Data:							
Beam ID: B	52			Gridlin	es: C Between	4 & 7	
Span: L =	4.270 m	Width: W =	8.747	m	E =	200,00	0 MPa
SL =	3.02 kPa	$\alpha_{\rm SL} =$	1.5				
DL =	1.05 kPa	$\alpha_{\rm DL}$ =	1.25				
I oadina:							
USL =	26.42 kN/m	UDL =	9.18	kN/m	$w_{f} =$	51.10	kN/m
		•					
Shear:		Moment:			Deflection	Allowed:	
$R_f = V_f =$	109.11 kN	$M_{f} =$	116.47	kNm	$\Delta_{\rm allow} =$	11.86	mm
Determine Sect	ion:						
$I_{req} =$	048.2E+06	$mm^4$					
Final Design Fr	om Steel Handb	ook (Blue Table	es):				
Beam Size:		Shear:			Moment:		
W3	60x33	V _r =	396	kN	$M_r =$	168	kNm
Moment of Iner	tia:		Nomin	al Mass:			
I _x =	082.7E+06	mm ⁴	m =	33	kg/m		
<b>D</b> !		C .: 11!	C D.	4	0 7	W/2C	022
Final De	eam Size Fo	or Grialine	C De	tween 4	<b>X</b> /	W 30	0X33
		51.10	kN/m				
W	V360x33	B52				CHECK FC	OR UPLIFT!
	() 109.11 ₽N	4.270	m	109	Т 11 kN		
	107.11 N1 V			107.	1 1 1X 1 N		

Simply S	Supported Bear	n Sizing For	r Roof
Project: Gibralta	ar Office Building	Pro	ect #: 13.001
Design Engineer: AS			Date: 16/03/13
Checked By: AH			
Basia Datas			
Beam ID: <b>B55</b>		Gridlines: E Be	etween 3 & 4
Span: $L = 4.562$ m	Width: W = 4.222	m	E = 200.000  MPa
SL = 3.02 kPa	$\alpha_{s_{I}} = 1.5$		
DL = 1.96 kPa	$\alpha_{\rm DL} = 1.25$		
Loading:			
USL = 12.75  kN/m	UDL = 8.28	kN/m	$w_{\rm f}$ = 29.47 kN/m
Shear:	Moment:	Defl	ection Allowed:
$R_{f} = V_{f} = 67.22$ kN	$M_{f} = 76.66$	kNm 🛛 🛆	$a_{\rm allow} = 12.67$ mm
Determine Section:			
$I_{reg} = 028.4E+06$	mm ⁴		
Final Design From Steel Hand	book (Blue Tables):		
Beam Size:	Shear:	Mor	nent:
W310x24	$V_r = 350$	kN	$M_r = 102 kNm$
Moment of Inertia:	Nomin	al Mass:	
$I_x = 042.7E+06$	mm ⁴ m =	= 24 kg/1	m
Final Beam Size F	or Gridline E Be	etween 3 & 4	W310x24
W/210_24	29.47 kN/m		Note: NEED TO
W 310x24	<b>B</b> 55		CHECK FOR
T 67.22 kN	4.362 m	T 67.22 kN	UPLIF1!

	Simply S	upportec	l Bea	ım Sizi	ing For R	loof	
	Project: Gibraltar	Office Building			Project #:	13.001	
Design E	ngineer: AS				Date:	16/03/13	
Chee	cked By: AH						
Basic Data:	56			Cridi	E Botwood	1 8- 8	
Seam ID: D	5125 m	Width W/ -	5 703	Gridi		<u>4 &amp; 0</u> 200.00	$0 MD_2$
Span: L =	3.125 fill		3.703	111	E –	200,00	JO MPa
<u> 5L –</u>	3.02 KPa	$a_{SL}$ –	1.5				
DL =	1.05 kPa	$\alpha_{\rm DL} =$	1.25				
-							
Loading:		-					
USL =	17.22 kN/m	UDL =	5.99	kN/m	$w_f \equiv$	33.32	kN/m
Shear:		Moment:			Deflection	Allowed:	
$R_f = V_f =$	85.38 kN	$M_{\rm f}$ =	109.40	kNm	$\Delta_{\rm allow} =$	14.24	mm
		-			-		
Determine Secti	on:						
$I_{req} =$	054.3E+06	mm ⁴					
Final Design Fr	om Steel Handbo	ok (Blue Table	es):				
Beam Size:		Shear:			Moment:		
W3	60x33	$V_r =$	396	kN	<b>M</b> _r =	168	kNm
Moment of Iner	tia:		Nomina	al Mass:			
I _x =	082.7E+06	mm ⁴	m =	33	kg/m		
Final Be	am Size For	Gridline	F Be	tween 4	& 8	W36	0x33
			1.5.7				
11	W260-22	33.32 DEC	KIN/m			Note: N	EED TO
v	, 500x55	D50				CHECK FO	OR UPLIFT!
	95 20 I-NI	5.125	IU	0	5 29 LNI		
	03.30 KIN			8	3.30 KIN		

	Sim	ply Su	pported	Bear	n Siziı	ng For Ro	oof	
	Project	: Gibraltar	Office Building			Project #:	13.001	
Design E	ngineer	:: AS				Date:	16/03/13	
Chee	cked By	: AH						
Pasia Datas								
Beem ID: B	60		Т		Grid	lines. A Between	C & D	
Span: I =	5 259	m	Width: W =	2 54	m	E = E	200.000	) MPa
SI =	3.02	kPa	$\eta_{\rm ex} =$	1.5	111		200,000	) <b>ivii</b> a
DI =	1.96	kPa	$\alpha_{\rm SL} =$	1.5				
DL -	1.70	KI a	u _{DL} –	1.23				
Loading:								
USL =	7.67	kN/m	UDL =	4.98	kN/m	$w_{f} =$	17.73	kN/m
Shear:			Moment:			Deflection	n Allowed	
$R_f = V_f =$	46.62	kN	$M_{f} =$	61.29	kNm	$\Delta_{\rm allow} =$	14.61	mm
Determine Secti	on:							
$I_{req} =$	026	.1E+06	$mm^4$					
	C + -	-1 TT	-1- (D1 T-h1)	) .				
Beam Size:	om ste	el Handbo	Shear	es):		Moment		
W3	10x21		V. =	303	kN	M. =	89	kNm
Moment of Iner	tia:			Nomin	al Mass:	1		
I _x =	037.	.0E+06	mm ⁴	m =	21	kg/m		
Final	Bean	n Size F	or Gridline	4 Bet	ween C	& D	W3	10x21
			4	1.5.7				
Ţ	731021	1	1/./3 B(0	KIN/m			Note: N	NEED TO
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V J I UXZI		5 250	m		<del></del>		LIFT
	46.62	2 kN	5.259	111	2	46.62 kN	01	1/11 1;

Simply Supported Beam Sizing For Roof									
Project: Gibraltar Office Building						Project #: 13.001			
Design Engineer: AS						Date: 16/03/13			
Checked By: AH									
Basic Data:	B 61		<u> </u>		Cridlin	an 8 Batwoon	C & E		
Spape I =	9 758		Width W/ -	1 060	Griann	Ees: o Detween	<u>200.00</u>	\cap MD ₀	
Span. L –	3.02	111 1-Do	$\alpha = \alpha$	1.909	111	<u> </u>	200,00	0 Ivira	
<u> 3L –</u>	3.02		u _{SL} –	1.5					
DL =	1.05	kPa	$\alpha_{\rm DL} =$	1.25					
Loading:									
USL =	5.95	kN/m	UDL =	2.07	kN/m	$w_f =$	11.50	kN/m	
Shear:	Moment:	ent: Deflection			1 Allowed:				
$R_f = V_f =$	50.38	kN	$M_{f} =$	110.30	kNm	$\Delta_{\text{allow}} =$	24.33	mm	
Determine Sect	tion:								
$I_{req} =$	093	.6E+06	mm ⁴						
Final Design F	rom Ste	el Handbo	ook (Blue Tabl	es):					
Beam Size:			Shear:	Shear:			Moment:		
W410x39			$V_r =$	480	kN	$M_r =$	227	kNm	
Moment of Inertia:				Nomin	al Mass:				
I _x =	127	.0E+06	mm^4	m =	39	kg/m			
Final	W41	0x39							
W410x39			B64	B64			Note: N	EED TO	
			8.758	m			CHECK FC)R UPLIFT!	
	50.38	8 kN			50.	.38 kN			
	Sin	nply S	upported	d Bea	am Siz	ing For F	Roof		
----------------------	--------------------	------------	---------------------	----------------	-------------------	------------------------	-------------------------------	----------------	--
	Project:	Gibraltar	Office Building		Project #: 13.001				
Design E	Engineer:	AS		Date: 16/03/13					
Che	cked By:	AH							
D 1 D									
Basic Data:					C : 11	D Datasaa	$\mathbf{D} \circ \mathbf{C}$		
Beam ID: D	E E 07		W/: 1/1 W/	0 (12	Grid	ines: 8 Detween	<u>200 0</u>	00 MD .	
Span: L –	5.587	m	Width: W -	0.642	m	E –	200,00	JO MPa	
SL =	3.02	kPa	$\alpha_{\rm SL} =$	1.5					
DL =	1.05	kPa	$\alpha_{\rm DL}$ =	1.25					
Loading:									
USL =	1.94	kN/m	UDL =	0.67	kN/m	$w_f =$	3.75	kN/m	
Shear:			Moment:			Deflection	Allowed:		
$R_f = V_f =$	10.48	kN	$M_{f} =$	14.64	kNm	$\Delta_{\rm allow} =$	15.52	mm	
	•								
Determine Sect	10n:		4						
$I_{req} \equiv$	007.9	9E+06	mm						
Einal Dasian En		1 TTogethe	al- (Dlass Tabl).					
Final Design Fr	om Stee	el Handbo	ok (blue 1 abl	es):		Momont			
Deani Size.	200		V –	241	1-NI	M –	۲Q	1-NI-m	
W2 Moment of Iner	tia		• _r –	Nomin	al Mass	wi _r –	50	KINIII	
$I_{\rm r} =$	016.0	6E+06	mm ⁴	m =	: 19	kø/m			
					-	8'			
Final Be	am Si	ize For	Gridline	8 Bet	tween H	3 & C	W2()0x19	
				1.5.7.					
			3.75	kN/m			Note: N	EED TO	
Ň	v200x19		B65				CHECK FO	OR UPLIFT!	
	ر 10 / ۹	l' LNI	5.58/	m	1	T 10.48 LN			
	10.48	K⊥N			1	10.40 KIN			

	Sir	mply S	Supported	l Bea	am Sizi	ing For I	Roof		
	Project	: Gibraltar	Office Building		Project #: 13.001				
Design E	Engineer	: AS				Date	:: 16/03/13		
Che	cked By	: AH							
Basic Data:									
Beam ID: B	66				Gridli	nes: 8 Betweet	A&B		
Span: L =	3 1 5 2	m	Width: W =	0.642	m	E =	= 200.0	00 MPa	
SL =	3.02	kPa	$\alpha_{cr} =$	1.5			200,0	000 11 11 u	
DL =	1.05	kPa	$\alpha_{\rm DL} =$	1.25					
Loading:									
USL =	1.94	kN/m	UDL =	0.67	kN/m	w _f =	= 3.75	kN/m	
			-						
Shear:			Moment:			Deflectio	n Allowed:		
$R_f = V_f =$	5.91	kN	$M_{\rm f}$ =	4.66	kNm	Δ_{allow} =	= 8.76	mm	
Determine Sect	ion:								
I _{req} =	001.	.4E+06	mm^4						
Final Design Fr	om Ste	el Handbo	ook (Blue Table	es):					
Beam Size:			Shear:			Moment			
W2	200x19		$V_r =$	241	kN	M _r =	- 58	kNm	
Moment of Iner	rtia:			Nomin	al Mass:				
I _x =	016.	.6E+06	mm ⁴	m =	: 19	kg/m			
Final Be	am S	ize Fo	r Gridline	8 Bet	tween A	& B	W2)0x19	
			2.75	1 N T /					
Ţ	W 2 0010	۰ ــــ	5./5 B ((KIN/M			Note: N	IEED TO	
Ň	v 200x 19		D00 3 152	m			CHECK F	OR UPLIFT!	
	5.91	l kN	5.152	111		5.91 kN			

	Sir	mply S	upportec	l Bea	Simply Supported Beam Sizing For Roof							
	Project	t: Gibraltar (Office Building		Project #: 13.001							
Design I	Engineer	:: AS				Date:	16/03/13					
Che	ecked By	r: AH										
Rasic Data:												
Beam ID: J	B68		<u> </u>		Gridline	es: 2.1	Between D.1	& E				
Span: L =	1.837	m	Width: W =	4.00	m	3 F	Between A.1 &	& A.3				
SL =	3.02	kPa	$\alpha_{\rm SL} =$	1.5		E =	200,00)0 MPa				
DL =	1.96	kPa	$\alpha_{\rm DL} =$	1.25								
Loading:												
USL =	12.08	kN/m	UDL =	7.84	kN/m	$w_f =$	27.92	kN/m				
	·											
Shear:			Moment:			Deflection	Allowed:					
$R_f = V_f =$	25.64	kN	M _f =	11.78	kNm	$\Delta_{\rm allow} =$	5.10	mm				
Determine Sect	tion:											
$I_{req} =$	001	.8E+06	mm ⁴									
Final Design F	rom Ste	el Handbo	ok (Blue Table	es):								
Beam Size:			Shear:			Moment:						
W	200x19		$V_r =$	241	kN	$M_r =$	58	kNm				
Moment of Ine	rtia:			Nomin	al Mass:							
I _x =	016.	.6E+06	mm ⁴	m =	: 19	kg/m						
Final Beam	Size Fo	or Gridlines	s 2.1 Between 1).1 & E	, 3 Between A	A.1 & A.3	W20)0x19				
			27.02	1.NT/m								
r	W/200v1(0	B68	KIN/ m		-	Note: N	EED TO				
	W 200A12	Å	1 837	m			CHECK FO	OR UPLIFT!				
	25.64	4 kN	1.007	111	25.6	54 kN						

Roof Bea	ims Calcula	ted U	sing S	-Fran	ne		
Project: Gibraltar Office Building	#: 13.001						
Design Engineer: JG Checked By: AS	Dat	e: 16/03/13			ote: NOT DRA	AWN TO SC	CALE
Gridline: A Between 7 & 8		USL =	18.66	kN/m	Beam Size:	W31	0
43.14 kN/m		UDL =	12.11	kN/m	$V_r =$	303	kN
W310x21 B44		$V_c =$	68.59	kN	M _r =	89.1	kNm
1.590 m		M_{i}	54.53	kNm	$I_x =$	037.0E+06	mm ⁴
	68.59 kN	$\Delta_{\rm allow} =$	8.83	mm	m =	21	kg/m
		$I_{req} =$	008.4E+06	mm^4			
Gridline: A Between 7 & 8		USL =	13.19	kN/m	Beam Size:	W36	0x33
25.52 kN/m 53.68	kN	UDL =	4.59	kN/m	$V_r =$	396	kN
W360x33 B48	, 2.569	$V_f =$	92.3	kN	$M_r =$	168	kNm
5.125 m	m	$M_{\rm f}$ =	152.57	kNm	$I_x =$	082.7E+06	mm^4
92.30 kN	92.17 kN	$\Delta_{\rm allow} =$	14.24	mm	m =	33	kg/m
		$I_{req} =$	041.6E+06	mm^4			
		-					
Gridline: C Between 7 & 8		USL =	26.42	kN/m	Beam Size:	W36	0x45
51.10 kN/m 44.55	kN	UDL =	9.18	kN/m	$V_r =$	498	kN
W360x45 B53	, 2.569	$V_f =$	153.29	kN	M _r =	242	kNm
5.125 m	m '	$M_{\rm f}$ =	224.85	kNm	$I_x =$	122.0E+06	mm^4
153.29 kN	153.17 kN	$\Delta_{\rm allow} =$	14.24	mm	m =	45	kg/m
		$I_{req} =$	083.3E+06	mm^4			

Roof Bear	ns Calcula	ated U	sing S	-Fran	ne		
Project: Gibraltar Office Building	Project: Gibraltar Office Building Project #: 13.001						
Design Engineer: JG	Da	te: 16/03/13		N	ote: NOT DRA	WN TO SC.	ALE
Checked By: AS							
Gridline: 3 Between A.3 & C		USL =	16.32	kN/m	Beam Size:	W460)x52
37.73 kN/m 25.64 kN	N	UDL =	10.59	kN/m	$V_r =$	680	kN
W460x52 B54	1.119 m	$V_{f} =$	165.49	kN	$M_r =$	338	kNm
1.600 m 7.928 m	~	$M_{\rm f}$ =	287.88	kNm	$I_x =$	212.0E+06	mm^4
219.62 kN	165.48 kN	$\Delta_{\rm allow} =$	26.47	mm	m =	52	kg/m
		$I_{req} =$	158.6E+06	mm^4			
		1			8		
Gridline: 3 Between A.1 & A.3		USL =	12.08	kN/m	Beam Size:	W760	x161
246.98 kN 27.92 kN	N/m	UDL =	7.84	kN/m	$V_r =$	2141	kN
W760x161 6.618 W B57		$V_{f} =$	304.79	kN	$M_r =$	1760	kNm
m 12.359 m	/	$M_{\rm f}$ =	1289.67	kNm	$I_x =$	001.9E+09	mm^4
287.26 kN	304.78 kN	$\Delta_{\rm allow} =$	34.33	mm	m =	161	kg/m
		$I_{req} =$	534.5E+06	mm^4			
		1			<u>8</u>		
Gridline: 3 Between A.1 & A.3		USL =	12.08	kN/m	Beam Size:	W760	x134
228.91 kN 27.92 kN/m 45	5.37 kN	UDL =	7.84	kN/m	$V_r =$	1650	kN
W760x134 6.618 B58	3.49	$V_{f} =$	327.67	kN	$M_r =$	1440	kNm
m 12.359 m	m	$M_{\rm f}$ =	1318.91	kNm	$I_x =$	001.5E+09	mm^4
291.68 kN	327.67 kN	$\Delta_{\text{allow}} =$	34.33	mm	m =	134	kg/m
		$I_{req} =$	534.5E+06	mm^4			

Roof Beams Calculated Using S-Frame									
Project: Gibraltar Office Building Project #: 13.001									
Design Engineer: JG	0	Date: 16/03/13				N	ote: NOT DRA	WN TO S	CALE
Checked Dy. AS									
Gridline: 7.5 Between A & C				USL =	3.87	kN/m	Beam Size:	W 42	10x39
7.49	0 kN/m 32.8	0 kN		UDL =	1.35	kN/m	$V_r =$	480	kN
W410x39	B63	v 3.152		$V_{f} =$	53.69	kN	$M_r =$	227	kNm
/\	8.736 m	m /	N N	$M_{\rm f} =$	132.07	kNm	$I_x =$	127.0E+0	5 mm ⁴
44.55 kN		53.68	kN	$\Delta_{\rm allow} =$	24.27	mm	m =	39	kg/m
				$I_{req} =$	060.5E+06	mm^4			
Gridline: 3 Between A.3 & C				USL =	18.66	kN/m	Beam Size:	W40	60x60
43.14	kN/m			UDL =	12.11	kN/m	$V_r =$	746	kN
W460x60	B67			$V_{f} =$	177.98	kN	$M_r =$	397	kNm
1.600	m 7.92	8 m /	N N	$M_{\rm f} =$	311.89	kNm	$I_x =$	255.0E+0	6 mm ⁴
246.98	3 kN	164.03	kN	$\Delta_{\rm allow} =$	26.47	mm	m =	60	kg/m
				I _{req} =	181.4E+06	mm^4			

Si	mply	y Supp	orted Be	am S	izing Fo	or Secon	ıd Floor	•	
	Project	t: Gibraltar	Office Building			Project #: 13.001			
Design I	Engineer	c: AS				Date:	16/06/13		
Che	ecked By	r: AH							
Basic Data:									
Beam ID: F	319				Gridlin	es: A.2 & D.2	Between 1 &	2	
Span: L =	6.300	m	Width: W =	0.745	m	E =	200,00)0 MPa	
SL =	7.15	kPa	$\alpha_{\rm SL} =$	1.5					
DL =	2.47	kPa	α _{DL} =	1.25					
						l			
Loading:	·	·		·					
USL =	5.33	kN/m	UDL =	1.84	kN/m	$w_{\rm f}$ =	10.29	kN/m	
Shear:			Moment:			Deflection	Allowed:		
$R_f = V_f =$	32.41	kN	$M_{f} =$	51.05	kNm	$\Delta_{\rm allow} =$	17.50	mm	
Determine Sect	tion:								
$I_{req} =$	031	.2E+06	mm ⁴						
Final Design Fi	rom Ste	el Handbo:	ok (Blue Table	28):					
Beam Size:			Shear:			Moment:			
W	310x21		$V_r =$	303	kN	$\mathbf{M}_{\mathrm{r}} =$	89	kNm	
Moment of Ine	rtia:			Nomin	al Mass:				
I _x =	037	.0E+06	mm ⁴	m =	- 21	kg/m			
F	inal Be	eam Size	For Gridline	A.2 &	D.2 Betwe	en 1 & 2	W31	0x21	
			10.00	1 1 7 /					
1	W/2107	1	10.29 P10	kN/m			Note: N	EED TO	
,	W 310X21		6 300				CHECK FO	OR UPLIFT!	
	32.4	1 kN	0.500	111	32.	.41 kN			

Si	mply	v Suppo	orted Bea	am S	izing F	or Secon	d Floor	•
	Project	: Gibraltar (Office Building			Project #: 1	3.001	
Design l	Engineer	:: AS				Date: 1	6/06/13	
Che	ecked By	r: AH						
Pasia Datas								
Basic Data: Beam ID: I	320				Gridlir	nes: A.2 & D.2 B	etween 2 &	3
Span: L =	7.928	m	Width: W =	0.745	m	E =	200,00)0 MPa
LL =	2.4	kPa	$\alpha_{LL} =$	1.5				
DL =	3.57	kPa	$\alpha_{\rm DL}$ =	1.25				
Loading:								
ULL =	1.79	kN/m	UDL =	2.66	kN/m	$w_f =$	6.01	kN/m
Shear:			Moment:			Deflection	Allowed:	
$R_f = V_f =$	23.81	kN	$M_{f} =$	47.19	kNm	$\Delta_{\rm allow} =$	22.02	mm
Determine Sect	tion:							
I _{req} =	020	.9E+06	mm^4					
Final Design F	rom Ste	el Handboo	ok (Blue Table	s):				
Beam Size:			Shear:			Moment:		
W	310x21		$V_r =$	303	kN	$M_r =$	89	kNm
Moment of Ine	rtia:		•	Nomin	al Mass:	· · · · · · · · · · · · · · · · · · ·		
I _x =	037	.0E+06	mm ⁴	m =	= 21	kg/m		
Fi	inal Be	am Size F	for Gridline	A.2 &	D.2 Betwe	een 2 & 3	W31	0x21

	6.01 kN/m	
W310x21	B20	
	7.928 m	
23.81 kN		23.81 kN

Simply Supp	orted Bea	m Siz	zing For	Second	Floo	r
Project: Gibralta	r Office Building			Project #: 1	13.001	
Design Engineer: AS				Date: 1	16/06/13	
Checked By: AH						
Basic Data:			0.111		0 0 1	
Beam ID: B21			Gridline	es: A.1 Betweer	n 3 & 4	
Span: L = 3.443 m	Width: W =	2.65	m	E =	200,000) MPa
LL = 4.8 kPa	$\alpha_{\rm LL} =$	1.5				
DL = 3.57 kPa	$\alpha_{\rm DL} =$	1.25				
T 19						
Loading:			1.2.7./			1.2.7./
ULL = 12.72 kN/m	UDL =	9.46	kN/m	$w_f =$	30.91	kN/m
Shear:	Moment:			Deflection	Allowed	
$R_{f} = V_{f} = 53.20$ kN	$M_{\rm f}$ =	45.80	kNm	$\Delta_{\rm allow} =$	9.56	mm
Determine Section:						
$I_{req} = 012.2E + 06$	mm^4					
Final Design From Steel Hands	Shoam	es):		Momont		
W20010	511ca1.	0.41	1 N T	Moment.	F 0	1 N.
w200x19	v _r –	241	KIN 1 M	$IvI_r =$	58	KINM
Moment of Inertia:	4	Nomina	al Mass:	1 /		
$I_x = 016.6E + 06$	mmʻ	m =	19	kg/m		
Final Beam Size Fo	or Gridline	A.1 B	etween 3	3 & 4	W2	00x19

S	impl	y Supp	orted Be	am S	Sizing Fo	or Second F	Floor	
	Project	: Gibraltar C	office Building			Project #:	13.001	
Design l	Engineer	: AS				Date:	16/06/13	
Che	ecked By	: AH						
Basic Data:								
Beam ID: I	322				Gridlines	: A Between 4 & 7		
Span: L =	4.270	m	Width: W =	4.369	m	Е =	200,000	MPa
LL =	2.4	kPa	$\alpha_{LL} =$	1.5				
DL =	3.57	kPa	$\alpha_{\rm DL}$ =	1.25				
Loading:								
ULL =	10.49	kN/m	UDL =	15.60	kN/m	w _f =	35.23	kN/m
Shear:			Moment:			Deflection Allow	ved:	
$R_f = V_f =$	75.21	kN	$M_{\rm f}$ =	80.28	kNm	$\Delta_{\rm allow} =$	11.86	mm
Determine Sec	tion:							
I _{req} =	019.	1E+06	mm ⁴					
Final Design F	rom Ste	el Handboo	k (Blue Table	s):				
Beam Size:			Shear:			Moment:		
W	310x21		$V_r =$	303	kN	$M_r =$	89	kNm
Moment of Ine	rtia:		-	Nomin	al Mass:			
I _x =	037.	0E+06	mm ⁴	m =	: 21	kg/m		
Final B	eam S	Size For	Gridline	A Be	tween 4 &	& 7	W31	0x21

	35.23 kN/m	
W310x21	B22	
	4.270 m	\wedge
75.21 kN		75.21 kN

Simply Supp	orted Bean	n Sizing F	or Second	Floor	
Project: Gibraltar	Office Building		Project #: 13	.001	
Design Engineer: AS			Date: 16	/06/13	
Checked By: AH					
.					
Basic Data:		Cridlin	B Batwoon 7 5	8.8	
$\frac{1}{2} = 2560 \text{ m}$	Width, W/ - 4	27 m	$E = \frac{1}{10000000000000000000000000000000000$	200.00	0 MDa
$\frac{1}{2.309} = \frac{1}{10}$	widuli. $w = 4$.5/ 111	<u> </u>	200,00	Jo Mira
LL - 4.8 kPa	α_{LL} –	1.5			
DL = 3.57 kPa	$\alpha_{\rm DL} = 1$.25			
Loading:					
ULL = 20.98 kN/m	UDL = 15	5.60 kN/m	$w_{f} =$	50.97	kN/m
Shoor	Mananti		Deflection Al	1	
Shear:	Moment:		Deflection A	llowed:	
$\mathbf{R}_{\mathrm{f}} = \mathbf{V}_{\mathrm{f}} = 65.46 \mathrm{kN}$	$M_f = 42$	2.04 kNm	$\Delta_{\rm allow} \equiv$	/.14	mm
Determine Section:					
$I_{req} = 008.3E + 06$	mm ⁴				
Final Design From Steel Handb	ook (Blue Tables):		Momont		
W200-10	Shear: $V = 0$	1-NI	M =	59	1-Nm
W200X17		minal Mass	1 11 r –	50	KINIII
I = 016 6E + 06	4	m = 10	lea/m		
	111111	111 - 19	rg/ III		
Final Beam Size Fo	or Gridline B	Between 7.	.5 & 8	W20	0x19

	50.97 kN/m	
W200x19	B24	
A	2.569 m	Λ
65.46 kN		65.46 kN

Si	Simply Supported Beam Sizing For Second Floor								
	Project	: Gibraltar O	ffice Building				Project #: 13	3.001	
Design	Engineer	: AS					Date: 16	5/06/13	
Ch	ecked By	: AH							
Basic Data:									
Beam ID: 1	B25				Gt	ridlines:	B.5 Between 3	3 & 4	
Span: L =	3.443	m	Width: W =	3.776	m		E =	200,00	0 MPa
LL =	4.8	kPa	$\alpha_{\rm LL} =$	1.5					
DL =	3.57	kPa	$\alpha_{ m DL}$ =	1.25					
Loading:									
ULL =	18.12	kN/m	UDL =	13.48	kN/m		$w_{\rm f}$ =	44.04	kN/m
Shear:			Moment:				Deflection A	llowed:	
$R_f = V_f =$	75.81	kN	$M_{\rm f}$ =	65.25	kNm		$\Delta_{\rm allow} =$	9.56	mm
Determine Sec	tion:								
I _{req} =	017.	.3E+06	mm ⁴						
Final Design F	rom Ste	el Handboo	k (Blue Table	es):					
Beam Size:			Shear:	,			Moment:		
W	′310x21		$V_r =$	303	kN		$M_r =$	89	kNm
Moment of Ine	rtia:			Nomin	al Mass:	:	·		
I _x =	037.	.0E+06	mm ⁴	m =	2	21	kg/m		
Final B	eam S	Size For	Gridline	B.5 I	Betwe	en 3	& 4	W31	0x21

	44.04 kN/m	
W310x21	B25	
	3.443 m	
75.81 kN		75.81 kN

Si	mply Supp	orted Be	am S	izing F	or Second	Floor	•
	Project: Gibraltar (Office Building			Project #: 13	.001	
Design E	Engineer: AS				Date: 16	06/13	
Che	cked By: AH						
Basic Data:		•		T			
Beam ID: B	526			Gridlin	es: C Between 3 a	& 4	
Span: L =	3.443 m	Width: W =	3.062	m	E =	200,00	0 MPa
LL =	2.4 kPa	$\alpha_{\rm LL} =$	1.5				
DL =	3.57 kPa	$\alpha_{\rm DL} =$	1.25				
Loading:							
ULL =	7.35 kN/m	UDL =	10.93	kN/m	$w_{f} =$	24.69	kN/m
					•		
Shear:		Moment:			Deflection A	llowed:	
$R_f = V_f =$	42.50 kN	$M_{\rm f}$ =	36.58	kNm	$\Delta_{\rm allow} =$	9.56	mm
Determine Sect	ion:						
$I_{req} =$	007.0E+06	mm^4					
Final Design Fr	om Steel Handbo	ok (Blue Table	es):				
Beam Size:		Shear:	/		Moment:		
W2	200x19	$V_r =$	241	kN	$M_r =$	58	kNm
Moment of Iner	tia:		Nomina	al Mass:			
I _x =	016.6E+06	mm ⁴	m =	19	kg/m		
Final Be	eam Size For	Gridline	C Be	tween 3	& 4	W20	0x19

			D // 4	2 001
Project: Gibral	tar Office Building		Project #: 1	3.001
Design Engineer: AS			Date: 1	6/06/13
Checked By: AH				
Basic Data:				
Beam ID: B27		Gridlin	nes: C Between 4	- & 7
Span: L = 4.270 m	Width: W =	8.749 m	E =	200,000 MPa
LL = 2.4 kPa	$\alpha_{\rm LL} =$	1.5		
DL = 3.57 kPa	$\alpha_{\rm DL}$ =	1.25		
oading:				
ULL = 21.00 kN/m	UDL =	31.23 kN/m	$w_f =$	70.54 kN/m
hear:	Moment:		Deflection A	Allowed:
$R_{f} = V_{f} = 150.60 \text{ kN}$	$M_{\rm f}$ =	160.77 kNm	$\Delta_{\rm allow} =$	11.86 mm
Petermine Section:				
$I_{req} = 038.3E + 06$	mm^4			
inal Design From Steel Hand	lbook (Blue Table	s):		
eam Size:	Shear:		Moment:	
W410x39	$V_r =$	480 kN	$M_r =$	227 kNm
Ioment of Inertia:	-	Nominal Mass:		
$I_x = 127.0E + 06$	mm ⁴	m = 39	kg/m	

	70.54 kN/m	
W410x39	B 27	
Λ	4.270 m	<u> </u>
150.60 kN		150.60 kN

Si	mply	⁷ Suppo	rted Be	am S	izin	g For	Second	Floor	
	Project	: Gibraltar O	ffice Building				Project #: 13	.001	
Design 1	Engineer:	: AS					Date: 16	/06/13	
Che	ecked By:	: AH							
Basic Data:					1				
Beam ID: I	B29				(Gridlines:	C.5 Between 3	8 & 4	
Span: L =	3.443	m	Width: W =	1.937	m		E =	200,00	0 MPa
LL =	2.4	kPa	$\alpha_{\rm LL} =$	1.5					
DL =	3.57	kPa	$\alpha_{\rm DL} =$	1.25					
Loading:									
ULL =	4.65	kN/m	UDL =	6.92	kN/m	ı	$w_f =$	15.62	kN/m
Shear:			Moment:				Deflection A	lowed:	
$R_f = V_f =$	26.88	kN	$M_{\rm f}$ =	23.14	kNm		$\Delta_{\rm allow} =$	9.56	mm
Determine Sec	tion:								
$I_{req} =$	004.	4E+06	mm ⁴						
Final Design F	rom Stee	el Handboo	k (Blue Table	es):					
Beam Size:			Shear:				Moment:		
W	200x19		$V_r =$	241	kN		$M_r =$	58	kNm
Moment of Ine	rtia:			Nomin	al Mas	s:	· · · · · · · · · · · · · · · · · · ·		
I _x =	016.	6E+06	mm ⁴	m =	:	19	kg/m		
Final B	eam S	Size For	Gridline	C.5 I	Betw	een 3	& 4	W20	0x19

	15.62 kN/m	
W200x19	B29	
	3.443 m	
26.88 kN		26.88 kN

Siı	mply Suppo	orted Be	am Si	zing Fo	or Second	Floor	•
	Project: Gibraltar C	Office Building			Project #: 13	.001	
Design E	ngineer: AS				Date: 16	/06/13	
Chee	cked By: AH						
Basic Data:							
Beam ID: B	30			Gridline	s: F Between 4 &	k 8	
Span: L =	5.125 m	Width: W =	5.702	m	E =	200,00	00 MPa
LL =	2.4 kPa	$\alpha_{\rm LL} =$	1.5				
DL =	3.57 kPa	$\alpha_{\rm DL} =$	1.25				
Loading:							
ULL =	13.68 kN/m	UDL =	20.36	kN/m	$w_{\rm f}$ =	45.97	kN/m
Shoom		Momont			Deflection A	lowed	
D = V = V	117 00 1 N	Moment.	150.04	1 N T		14.04	
$R_f - V_f -$	117.80 KIN	$M_{\rm f}$ –	150.94	kinm	$\Delta_{\text{allow}} =$	14.24	mm
Determine Secti	on:						
$I_{req} =$	043.2E+06	mm ⁴					
Final Design Fr	om Steel Handboo	k (Blue Table	es):				
Beam Size:		Shear:			Moment:		
W3	60x33	$V_r =$	396	kN	M _r =	168	kNm
Moment of Iner	tia:		Nomina	l Mass:			
I _x =	082.7E+06	mm ⁴	m =	33	kg/m		
Final Be	am Size For	Gridline	F Bet	ween 4 &	& 8	W36	0x33

	45.97 kN/m	
W360x33	B30	
\wedge	5.125 m	\wedge
117.80 kN		117.80 kN

Simply Su	upported Bea	m Sizing	g For Secon	d Floor
Project: C	Fibraltar Office Building		Project #	: 13.001
Design Engineer: A	S		Date	: 16/06/13
Checked By: A	.H			
Basic Data:			Cridlinger 1 Roturgen	1 2 8- D 2
Span: $I = 6.880$ m	width W -	3.15 m	F -	$\frac{1}{200000} \text{MP}_{2}$
SI = 5.3 k	$\mathbf{P}_{\mathbf{Q}}$ $\mathbf{Q}_{\mathbf{Q}}$	1.5	E -	200,000 WH a
SL =	$u_{SL} =$	1.5		
DL = 2.47 k	Pa $\alpha_{\rm DL} =$	1.25		
Laadina				
Loading:		770 INI/		2477 111/
USL = 16.70 k	N/m UDL =	/./8 KIN/1	m W _f –	54.// KIN/M
Shear	Moment:		Deflection	n Allowed:
$R_c = V_c = -119.76$ k	N $M_c =$	206.25 kNm	$\Lambda_{\rm H} =$	1914 mm
		200.25	allow allow	17.11
Determine Section:				
$L_{m} = 127.9F$	$E + 06 mm^4$			
req	in co min			
Final Design From Steel	Handbook (Blue Tabl	es):		
Beam Size:	Shear:		Moment:	
W410x46	$V_r =$	578 kN	$M_r =$	275 kNm
Moment of Inertia:		Nominal Ma	ss:	
I _x = 156.0E	E+06 mm ⁴	m =	46 kg/m	
			0.	
Final Beam S	ize For Gridline	1 Between	A 2 & D 2	W410x46
		1 Detweet		
	34 77	kN/m		Note: NEED TO
W410x46	B31			CHECK FOR
<u></u>	6.889	m	h	UPLIFT!
119.76 k	Ν		119.76 kN	

Simply Su	pported Beam	Sizing Fo	or Secor	nd Floo	r
Project: Gibr	altar Office Building		Project #:	13.001	
Design Engineer: AS		<u> </u>	Date:	16/06/13	
Checked By: AH					
Basic Data:		Cridlin) Datwoon	1 2 °- D 2	
$\frac{\text{Beam ID: } \mathbf{D32}}{\text{Secure I} = -6.880}$	$W^{2} = 120$	Gridline	es: 2 Between	A.2 & D.2	
Span: $L = 0.889 \text{ m}$	Width: W - 7.114	- m	E -	200,00	JO MPa
SL = /.15 kPa	$\alpha_{\rm SL} = 1.5$				
DL = 3.57 kPa	$\alpha_{\rm DL} = 1.25$				
Loading:					
USL = 50.87 kN/m	m UDL = 25.40) kN/m	$w_{\rm f}$ =	108.04	kN/m
Shear:	Moment:		Deflection	Allowed:	
$R_{f} = V_{f} = 372.16$ kN	$M_{\rm f} = -640.9$	5 kNm	$\Delta_{\rm allow} =$	19.14	mm
			<u> </u>		
Determine Section:					
$I_{reg} = 389.8E+0$	6 mm^4				
1					
Final Design From Steel Har	ndbook (Blue Tables):				
Beam Size:	Shear:		Moment:		
W610x82	$V_r = 1170$	kN	$M_r =$	683	kNm
Moment of Inertia:	Nomi	nal Mass:	^		
$I_x = 560.0E + 0$	6 mm ⁴ m	= 82	kg/m		
			0,		
Final Ream Size	e For Gridline 2 Be	tween A 2	<u> </u>	W/61	∩∞82
I IIIai Dealii Oiz	e 1º01 Offunite 2 De		a D.2		UX02
	100.04 I-N /				
W/610v82	108.04 KIN/III B32			Note: N	EED TO
w 010x02	6 880 m			CHECK FO	O <mark>R UPLIFT</mark> !
	0.007 111	270	16 I-NI		

Si	mply Sup	ported Be	am S	Sizing F	for Second	Floo	r					
	Project: Gibralt	tar Office Building		Project #: 13.001								
Design F	Engineer: AS				Date: 16	/06/13						
Che	cked By: AH											
Basic Data:	26				(1)							
Beam ID: B	336			Gridlin	nes: 4 Between D a	& F						
Span: L =	3.500 m	Width: W =	0.54	m	E =	200,00	00 MPa					
LL =	2.4 kPa	$\alpha_{LL} =$	1.5									
DL =	3.57 kPa	$\alpha_{\rm DL} =$	1.25									
Loading:												
ULL =	1.30 kN/m	UDL =	1.93	kN/m	$w_f =$	4.35	kN/m					
Shear:		Moment:			Deflection Al	lowed:						
$R_f = V_f =$	7.62 kN	$M_{\rm f}$ =	6.67	kNm	$\Delta_{\rm allow} =$	9.72	mm					
Determine Sect I _{req} =	ion: 001.3E+06	mm ⁴										
Final Design Fi	om Steel Hand	lbook (Blue Tabl	es):									
Beam Size:		Shear:			Moment:							
W	200x19	$V_r =$	241	kN	$M_r =$	58	kNm					
Moment of Iner	rtia:		Nomir	nal Mass:								
I _x =	016.6E+06	mm ⁴	m :	= 19	kg/m							
Final Be	am Size F	or Gridline	4 Be	tween D	& F	W2(Final Beam Size For Gridline 4 Between D & FW200x19					

Si	mply	^y Supp	orted Be	am S	izing F	or Second	l Floo	ľ
	Project	: Gibraltar (Office Building		Τ	Project #: 12	3 001	
Design Engineer: AS			Date: 1	5.001				
Che	ecked By	: AH				Date. It	5/00/15	
	•				4			
Basic Data:								
Beam ID: I	341				Gridlin	nes: 8 Between C	& F	
Span: L =	8.758	m	Width: $W =$	1.969	m	Е =	200,00	00 MPa
LL =	2.4	kPa	$\alpha_{\rm LL} =$	1.5				
DL =	3.57	kPa	$\alpha_{\rm DL}$ =	1.25				
Loading:								
ULL =	4.73	kN/m	UDL =	7.03	kN/m	$w_f =$	15.88	kN/m
Shear:			Moment:			Deflection A	llowed:	
$R_f = V_f =$	69.52	kN	$M_{\rm f}$ =	152.21	kNm	$\Delta_{\rm allow} =$	24.33	mm
Determine Sect I _{req} =	tion: 074	4E+06	mm ⁴					
Final Design F	rom Ste	el Handbo	ok (Blue Tabl	es):				
Beam Size:			Shear:			Moment:		
W	360x33		$V_r =$	396	kN	$M_r =$	168	kNm
Moment of Ine	rtia:			Nomin	al Mass:			
I _x =	082.	.7E+06	mm^4	m =	33	kg/m		
Final Be	Final Beam Size For Gridline 8 Between C & FW360x33						0x33	

	15.88 kN/m	
W360x33	B41	
Λ	8.758 m	\wedge
69.52 kN		69.52 kN

Si	mply Sup	ported Be	am S	Sizing]	For Second	l Floo	r	
	Project: Gibral	tar Office Building	5		Project #: 13.001			
Design E	Engineer: AS				Date: 10	5/06/13		
Che	cked By: AH							
Basic Data:								
Beam ID: B	342			Gridl	ines: 8 Between B	& C		
Span: L =	5.587 m	Width: W =	1.285	m	Е =	200,00	00 MPa	
LL =	4.8 kPa	$\alpha_{LL} =$	1.5					
DL =	3.57 kPa	$\alpha_{\rm DL} =$	1.25					
Loading:								
ULL =	6.17 kN/m	UDL =	4.59	kN/m	$w_f =$	14.99	kN/m	
Shear:		Moment:			Deflection A	llowed:		
$R_f = V_f =$	41.86 kN	$M_{\rm f}$ =	58.47	kNm	$\Delta_{ m allow} =$	15.52	mm	
Determine Sect	ion: 025.2E+06	mm ⁴						
Final Design Fr	om Steel Hand	lbook (Blue Tabl	es):					
Beam Size:		Shear:			Moment:			
W	310x21	$V_r =$	303	kN	$M_r =$	89	kNm	
Moment of Iner	rtia:		Nomin	al Mass:				
I _x =	037.0E+06	mm ⁴	m =	= 21	kg/m			
Final Be	Final Beam Size For Gridline 8 Between B & CW310x21							

	14.99 kN/m	
W310x21	B42	
Λ	5.587 m	\wedge
41.86 kN		41.86 kN

Si	mply	v Suppo	orted Be	am S	bizing]	For Second	l Floo	r
	Droioat	r Cibaeltea ()ffing Duilding			Droiget #, 1	2 001	
Design Engineer AS					Date: 1	5/06/13		
Desigit	clighteen	. ЛО • АЦ				Date. It	5/00/13	
Cite	eckeu Dy	. /111						
Basic Data:								
Beam ID: I	343				Gridl	lines: 8 Between A	& B	
Span: L =	3.152	m	Width: W =	1.285	m	Е =	200,00	00 MPa
LL =	2.4	kPa	$\alpha_{LL} =$	1.5				
DL =	3.57	kPa	$\alpha_{\rm DL} =$	1.25				
Loading:								
ULL =	3.08	kN/m	UDL =	4.59	kN/m	$w_{\rm f}$ =	10.36	kN/m
Shaam			Momont			Deflection A	llowed	
Snear: $D = M =$	4 6 0 0	1.3.7	Moment:	10.07	1 3 7	Deflection A		
$R_f = V_f =$	16.33	kN	$M_{f} =$	12.8/	kNm	$\Delta_{\rm allow} \equiv$	8.76	mm
Determine Sec	tion:							
I _{req} =	002	.3E+06	mm ⁴					
Final Design F	rom Ste	el Handboo	ok (Blue Tabl	es):				
Beam Size:			Shear:			Moment:		
W	200x19		$V_r =$	241	kN	$M_r =$	58	kNm
Moment of Ine	rtia:			Nomin	al Mass:			
$I_x =$	016.	.6E+06	mm ⁴	m =	= 19	kg/m		
Final Be	Final Beam Size For Gridline 8 Between A & BW200x19							

	10.36 kN/m	
W200x19	B43	
^	3.152 m	Λ
16.33 kN		16.33 kN

Second Floor Beams Calculated Using S-Frame								
Project: Gibraltar Office Building	Proje	ct #: 13.001						
Design Engineer: JG	Ι	Date: 16/03/13		N	ote: NOT DRA	AWN TO SC	ALE	
Checked By: AS								
Gridline: A Between 7 & 8		ULL =	20.97	kN/m	Beam Size:	W530)x66	
50.94 kN/m 205.31	kN	UDL =	15.59	kN/m	$V_r =$	927	kN	
W530x66 B23	2.569	$V_{f} =$	233.45	kN	$M_r =$	484	kNm	
5.125 m	m	$M_{f} =$	430.3	kNm	$I_x =$	351.0E+06	mm^4	
233.45 kN	232.93 kN	$\Delta_{\rm allow} =$	14.24	mm	m =	66	kg/m	
		$I_{req} =$	066.1E+06	mm^4				
Gridline: C Between 7 & 8		ULL =	41.99	kN/m	Beam Size:	W610)x82	
102.01 kN/m 187.07	kN	UDL =	31.23	kN/m	$V_r =$	1170	kN	
W610x82 B28	2.569	$V_{f} =$	355.18	kN	$M_r =$	683	kNm	
5.125 m	m	$M_{\rm f}$ =	574.61	kNm	$I_x =$	560.0E+06	mm^4	
355.18 kN	354.70 kN	$\Delta_{\rm allow} =$	14.24	mm	m =	82	kg/m	
		$I_{reg} =$	132.5E+06	mm^4				
		1						
Gridline: 3 Between C & D.2		ULL =	10.68	kN/m	Beam Size:	W410)x46	
26.88 kN 35.87	kN/m	UDL =	15.88	kN/m	$V_r =$	578	kN	
W410x46 3.017 v B33		$V_{f} =$	138.68	kN	M _r =	275	kNm	
m 6.890 m	/	$M_{f} =$	255.34	kNm	I _x =	156.0E+06	mm^4	
138.68 kN	135.34 kN	$\Delta_{\text{allow}} =$	19.14	mm	 m =	46	kg/m	
		I _{req} =	081.9E+06	mm ⁴		10	<i>U</i> ,	

Second Floor Beams Calculated Using S-Frame								
Project: Gibraltar Office Building	Project: Gibraltar Office Building Project #: 13,001							
Design Engineer: IG	Dat	re: 16/03/13			ote NOT DR	AWN TO SC	ALE	
Checked By: AS		. 10/ 05/ 15		-		101110.00		
Gridline: 3 Between A.3 & C		ULL =	35.55	kN/m	Beam Size:	W530)x66	
75.81 _{kN} 86.38	kN/m	UDL =	26.44	kN/m	$V_r =$	927	kN	
W530x66 2.251 B34		$V_{f} =$	294.14	kN	M _r =	484	kNm	
m 5.743 m		$M_{\rm f} =$	446.56	kNm	$I_x =$	351.0E+06	mm^4	
294.15 kN	277.77 kN	$\Delta_{\text{allow}} =$	15.95	mm	m =	66	kg/m	
		I _{req} =	157.8E+06	mm ⁴			0,	
		req						
Gridline: 3 Between A.1 & A.3		ULL =	35.55	kN/m	Beam Size:	W310)x24	
23.81 kN 86.38	kN/m	UDL =	26.44	kN/m	$V_r =$	350	kN	
W310x24 0.402 B35		$V_{f} =$	96.61	kN	M _r =	102	kNm	
m 1.808 m		$M_{f} =$	40.24	kNm	$I_x =$	042.7E+06	mm^4	
96.61 kN 43.15 kN	83.39 kN	$\Delta_{\rm allow} =$	5.02	mm	m =	24	kg/m	
		$I_{req} =$	004.9E+06	mm^4				
Gridline: 4 Between C & D		ULL =	2.46	kN/m	Beam Size:	W310)x21	
26.88 kN 8.27	kN/m	UDL =	3.66	kN/m	$V_r =$	303	kN	
W310x21 1.386 B37		$V_{f} =$	41.54	kN	$M_r =$	89.1	kNm	
m 5.259 m		$M_{f} =$	50.25	kNm	$I_x =$	037.0E+06	mm ⁴	
41.55 kN	28.84 kN	$\Delta_{\rm allow} =$	14.61	mm	m =	21	kg/m	
		$I_{req} =$	008.4E+06	mm^4				

Second Floor Beams Calculated Using S-Frame								
Project: Gibraltar Office Building	Project #	#: 13.001						
Design Engineer: JG	Date	e: 16/03/13		N	ote: NOT DRA	AWN TO SC	ALE	
Checked By: AS								
		-						
Gridline: 4 Between B.1 & C		ULL =	19.12	kN/m	Beam Size:	W410)x46	
75.81 kN 46.45	5 kN/m	UDL =	14.22	kN/m	$V_r =$	578	kN	
W410x46 2.251 y B38		$V_{f} =$	164.83	kN	$M_r =$	275	kNm	
m 5.236 m		$M_{\rm f} =$	253.34	kNm	$I_x =$	156.0E+06	mm^4	
164.83 kN	154.20 kN	$\Delta_{\rm allow} =$	14.54	mm	m =	46	kg/m	
		$I_{req} =$	064.3E+06	mm^4				
Gridline: 4 Between A & B.1		ULL =	19.12	kN/m	Beam Size:	W310)x28	
46.45 kN/m 53.20) kN	UDL =	14.22	kN/m	V _r =	380	kN	
W310x28 B39	v 1.187	$V_{f} =$	116.5	kN	$M_r =$	126	kNm	
3.502 m	m	$M_{f} =$	106.28	kNm	$I_x =$	054.3E+06	mm^4	
99.37 kN	116.51 kN	$\Delta_{\rm allow} =$	9.73	mm	m =	28	kg/m	
		$I_{req} =$	019.2E+06	mm^4				
Gridline: 7.5 Between A & C	1	ULL =	15.40	kN/m	Beam Size:	W530)x66	
37.41 kN/m 65.40	5 kN	UDL =	11.45	kN/m	$V_r =$	927	kN	
W530x66 B40	v 3.152	$V_{f} =$	205.3	kN	$M_r =$	484	kNm	
8.738 m	m	$M_{\rm f} =$	467.67	kNm	$I_x =$	351.0E+06	mm ⁴	
187.07 kN	205.31 kN	$\Delta_{\rm allow} =$	24.27	mm	m =	66	kg/m	
		$I_{req} =$	240.8E+06	mm ⁴				

(Simply Supp	ported B	eam	Sizi	ng F	or First I	Floor	
	Project: Gibraltar Office Building				Project #: 13.001			
Design 1	Engineer: AS					Date: 16	/03/13	
Che	ecked By: AH							
Basic Data:								
Beam ID: I	B1			(Gridlines:	A.1 Between 3	3 & 4	
Span: L =	3.443 m	Width: W =	2.65	m		E =	200,00	0 MPa
LL =	4.8 kPa	$\alpha_{\rm LL} =$	1.5					
DL =	3.57 kPa	$\alpha_{\rm DL} =$	1.25					
		•						
Loading:								
ULL =	12.72 kN/m	UDL =	9.46	kN/n	n	$w_f =$	30.91	kN/m
Shear:		Moment:				Deflection A	llowed:	
$R_f = V_f =$	53.20 kN	$M_{\rm f}$ =	45.80	kNm		$\Delta_{\rm allow} =$	9.56	mm
Determine Sec	tion:							
I _{req} =	012.2E+06	mm^4						
Final Design F	rom Steel Handboo	ok (Blue Table	es):					
Beam Size:		Shear:				Moment:		
W	200x19	$V_r =$	241	kN		$M_r =$	58	kNm
Moment of Ine	rtia:		Nomin	al Mas	ss:	·		
I _x =	016.6E+06	mm ⁴	m =	=	19	kg/m		
Final B	eam Size For	Gridline	A.1 E	Betw	een 3	& 4	W20	0x19

Simply Supported Beam Sizing For First Floor						
Project: Gibra	ltar Office Building	Pr	roject #: 13.	001		
Design Engineer: AS			Date: 16,	/03/13		
Checked By: AH						
Basic Data:			D	-		
Beam ID: B2		Gridlines: A	Between 4 8	c /		
Span: $L = 4.270$ m	Width: $W = 4.369$	m	E =	200,00	0 MPa	
LL = 2.4 kPa	$\alpha_{\rm LL} = 1.5$					
DL = 3.57 kPa	$\alpha_{\rm DL} = 1.25$					
Loading:						
ULL = 10.49 kN/m	uDL = 15.60	kN/m	$w_{\rm f}$ =	35.23	kN/m	
01			<u> </u>			
Shear:	Moment:	De	eflection Al	lowed:		
$R_{f} = V_{f} = 75.21 \text{ kN}$	$M_{f} = 80.28$	kNm	$\Delta_{\text{allow}} =$	11.86	mm	
Determine Section:						
$I_{req} = 019.1E + 06$	mm ⁴					
Final Design From Steel Han	dbook (Blue Tables):					
Beam Size:	Shear:	Μ	oment:			
W310x21	$V_r = 303$	kN	$M_r =$	89	kNm	
Moment of Inertia:	Nomi	nal Mass:				
$I_x = 037.0E + 06$	mm ⁴ m	= 21 kg	g/m			
Final Beam Size	For Gridline A B	etween 4 & 7		W31	0x21	

	35.23 kN/m	
W310x21	B2	
	4.270 m	\wedge
75.21 kN		75.21 kN

Simply Supp	orted Bea	m Sizi	ing For	: First F	Floor	
Project: Gibraltar	Office Building			Project #: 1	3.001	
Design Engineer: AS				Date: 1	6/03/13	
Checked By: AH						
Basic Data:			0.111	DD / 7	500	
Beam ID: B4	XX77 1.1 XX77	1.2(0)	Gridlines:	B Between /	.5 & 8	
Span: $L = 2.569 \text{ m}$	Width: $W =$	4.369 m		E =	200,000	MPa
LL = 4.8 kPa	$\alpha_{LL} =$	1.5				
DL = 3.57 kPa	$\alpha_{\rm DL}$ =	1.25				
Loading:						
ULL = 20.97 kN/m	UDL =	15.60 kN	l/m	$w_f =$	50.95	kN/m
Shear:	Moment:			Deflection A	Allowed:	
$R_{f} = V_{f} = 65.45 \text{ kN}$	$M_{\rm f}$ =	42.04 kN	Im	$\Delta_{\rm allow} =$	7.14	mm
Determine Section: $I = 0.083E\pm06$	4					
$I_{req} = 000.3E \pm 00$	mm					
Final Design From Steel Handbo	ok (Blue Tables):				
Beam Size:	Shear:			Moment:		
W200x19	$V_r =$	241 kN	1	$M_r =$	58	kNm
Moment of Inertia:	l	Nominal M	lass:			
$I_x = 016.6E + 06$	mm^4	m =	19	kg/m		
Final Beam Size Fo	r Gridline l	B Betw	een 7.5	& 8	W20)0x19

Simply Supported Beam Sizing For First Floor								
	Project	: Gibraltar C	Office Building			Project #:	13.001	
Design l	Engineer	: AS				Date:	16/03/13	
Che	ecked By	: AH						
Desis Deter								
Basic Data: Beam ID: I	35				Gridlines	: B 5 Between 3 &	4	
Span: L =	3.443	m	Width: W =	3.74	m	E =	200.000	MPa
LL =	4.8	kPa	$\alpha_{II} =$	1.5				
DL =	3.57	kPa	$\alpha_{\rm DL} =$	1.25				
Loading:								
ULL =	17.95	kN/m	UDL =	13.35	kN/m	$w_f =$	43.62	kN/m
Shear:			Moment:			Deflection Allow	ved:	
$R_f = V_f =$	75.09	kN	$M_{\rm f}$ =	64.63	kNm	$\Delta_{\rm allow} =$	9.56	mm
Determine Sec	tion:							
$I_{req} =$	017.	2E+06	mm^4					
Final Design F	rom Ste	el Handboo	k (Blue Table	s):				
Beam Size:			Shear:			Moment:		
W	310x21		$V_r =$	303	kN	$M_r =$	89	kNm
Moment of Ine	rtia:		-	Nomin	al Mass:			
I _x =	037.	0E+06	mm^4	m =	= 21	kg/m		
Final B	eam S	Size For	Gridline	B.5 I	Between 3	& 4	W31	.0x21

5	Simply Supp	oorted B	eam	Sizing	For First I	Floor	
	Project: Gibraltar C	Office Building			Project #: 13	.001	
Design H	Engineer: AS				Date: 16	/03/13	
Che	ecked By: AH						
Basic Data:		T		1			
Beam ID: E	36			Gridlin	nes: C Between 3 &	& 4	
Span: L =	3.443 m	Width: $W =$	5.365	m	E =	200,00	0 MPa
LL =	2.4 kPa	$\alpha_{\rm LL} =$	1.5				
DL =	3.57 kPa	$\alpha_{\rm DL} =$	1.25				
		•					
Loading:							
ULL =	12.88 kN/m	UDL =	19.15	kN/m	$w_{f} =$	43.26	kN/m
Shear:		Moment:			Deflection A	llowed:	
$R_f = V_f =$	74.46 kN	$M_{\rm f}$ =	64.09	kNm	$\Delta_{\rm allow} =$	9.56	mm
Determine Sect	ion:						
$I_{req} =$	012.3E+06	mm ⁴					
Final Design Fi	rom Steel Handboo	ok (Blue Table	es):				
Beam Size:		Shear:	,		Moment:		
W	310x21	$V_r =$	303	kN	$M_r =$	89	kNm
Moment of Iner	rtia:		Nomin	al Mass:			
I _x =	037.0E+06	mm ⁴	m =	21	kg/m		
Final Be	eam Size For	Gridline	C Be	tween 3	& 4	W31	0x21

	Simp	ly Supp	orted B	eam	Sizing H	For First I	Floor	
	Project	: Gibraltar O	ffice Building			Project #: 13	.001	
Design	Engineer	: AS				Date: 16	/03/13	
Ch	ecked By	: AH						
Basic Data:								
Beam ID:]	B7				Gridline	es: C Between 4 d	& 7	
Span: L =	4.270	m	Width: W =	8.953	m	Е =	200,00	0 MPa
LL =	2.4	kPa	$\alpha_{LL} =$	1.5				
DL =	3.57	kPa	$\alpha_{\rm DL}$ =	1.25				
Loading:								
ULL =	21.49	kN/m	UDL =	31.96	kN/m	$w_{\rm f}$ =	72.18	kN/m
Shear:			Moment:			Deflection A	llowed:	
$R_f = V_f =$	154.11	kN	$M_{\rm f}$ =	164.51	kNm	$\Delta_{\rm allow} =$	11.86	mm
Determine Sec I _{req} =	tion: 039.	2E+06	mm ⁴					
Final Design F	From Stee	el Handboo	k (Blue Table	s):				
Beam Size:			Shear:			Moment:		
W	/410x39		$V_r =$	480	kN	$M_r =$	227	kNm
Moment of Ine	ertia:			Nomin	al Mass:			
I _x =	127.	0E+06	mm ⁴	m =	39	kg/m		
Final Beam Size For Gridline C Between 4 & 7W410x39					0x39			

Simply Supported Beam Sizing For First Floor							
Р	roject: Gibraltar O	ffice Building			Project #: 13	.001	
Design Eng	gineer: AS				Date: 16	/03/13	
Check	ed By: AH						
Basic Data:							
Beam ID: B9				Gridlin	es: 3 Between C &	& D.2	
Span: $L = 6$.888 m	Width: W =	1.428	m	E =	200,00	00 MPa
LL =	2.4 kPa	$\alpha_{\rm LL} =$	1.5				
DL = 3	3.57 kPa	$\alpha_{\rm DL}$ =	1.25				
Loading:							
ULL = 3	3.43 kN/m	UDL =	5.10	kN/m	$w_{f} =$	11.51	kN/m
Shear:		Moment:			Deflection Al	lowed:	
$R_f = V_f = 3$	9.65 kN	$M_{f} =$	68.28	kNm	$\Delta_{\text{allow}} =$	19.13	mm
Determine Section	n:						
I _{req} =	026.3E+06	mm ⁴					
Final Design From	n Steel Handboo	k (Blue Table	es):		-		
Beam Size:		Shear:			Moment:		
W310)x21	$V_r =$	303	kN	$M_r =$	89	kNm
Moment of Inertia	a:		Nomin	al Mass:			
$I_x =$	037.0E+06	mm^4	m =	21	kg/m		
Final Bea	m Size For	Gridline	3 Bet	ween C	& D.2	W31	0x21

Si	mply	y Suppo	orted Be	am S	bizing Fo	or First I	Floor	
	Project	t: Gibraltar C	Office Building			Project #: 1	3.001	
Design I	Engineer	:: AS				Date: 1	6/03/13	
Che	ecked By	r: AH						
Basic Data:			•		1			
Beam ID: I	311				Gridline	s: 3 Between A	A.1 & A.2	
Span: L =	1.808	m	Width: W =	1.722	m	Е =	200,000) MPa
LL =	4.8	kPa	$\alpha_{\rm LL} =$	1.5				
DL =	3.57	kPa	$\alpha_{\rm DL}$ =	1.25				
			•			-		
Loading:								
ULL =	8.27	kN/m	UDL =	6.15	kN/m	$w_{\rm f}$ =	20.08	kN/m
			-					
Shear:			Moment:			Deflection .	Allowed	
$R_f = V_f =$	18.15	kN	$M_{\rm f}$ =	8.21	kNm	$\Delta_{\rm allow} =$	5.02	mm
Determine Sect	tion:							
$I_{req} =$	001	.1E+06	mm ⁴					
Final Design F	rom Ste	el Handboo	k (Blue Table	es):		-		
Beam Size:			Shear:			Moment:		
W	200x19		$V_r =$	241	kN	$M_r =$	58	kNm
Moment of Ine	rtia:			Nomin	al Mass:			
I _x =	016	.6E+06	mm^4	m =	19	kg/m		
Final Be	eam S	bize For	Gridline	3 Bet	tween A.1	& A.2	W2	00x19

Simply Supported Beam Sizing For First Floor								
	Project	t: Gibraltar C	Office Building			Project #: 1	3.001	
Design 1	Engineer	:: AS				Date: 1	6/03/13	
Che	ecked By	r: AH						
Basic Data:	R12				Grid	ines: 4 Between (`& F	
Span: L =	5 259	m	Width: W =	1.026	m	F =	200.00	$00 MP_2$
LL =	2.4	kPa	$\alpha_{II} =$	1.5	111	L -	200,00	JO IVII a
DL =	3.57	kPa	$\alpha_{\rm DL} =$	1.25				
			DI					
Loading:								
ULL =	2.46	kN/m	UDL =	3.66	kN/m	$w_{\rm f}$ =	8.27	kN/m
Shear:			Moment:			Deflection .	Allowed:	
$R_f = V_f =$	21.75	kN	$M_{\rm f}$ =	28.60	kNm	$\Delta_{\rm allow} =$	14.61	mm
Determine Sec	tion							
I _{rea} =	008	.4E+06	mm ⁴					
icq								
Final Design F	rom Ste	el Handboo	k (Blue Table	es):				
Beam Size:			Shear:			Moment:		
W	'200x19		$V_r =$	241	kN	$M_r =$	58	kNm
Moment of Ine	rtia:			Nomin	al Mass:			
I _x =	016	.6E+06	mm ⁴	m =	= 19	kg/m		
Final B	Final Beam Size For Gridline 4 Between C & F					W20)0x19	

	8.27 kN/m	
W200x19	B12	
	5.259 m	\wedge
21.75 kN		21.75 kN

Simply Supported Beam Sizing For First Floor								
	Project	: Gibraltar O	ffice Building			Project #: 1	13.001	
Design I	Engineer	: AS				Date: 1	16/03/13	
Che	ecked By	: AH						
Basic Data:			r			0.7	0 D	
Beam ID: E	318				Gridlin	nes: 8 Between A	1 & B	
Span: L =	3.152	m	Width: W =	1.285	m	E =	200,00	00 MPa
LL =	2.4	kPa	$\alpha_{\rm LL} =$	1.5				
DL =	3.57	kPa	$\alpha_{\rm DL}$ =	1.25				
Loading:								
ULL =	3.08	kN/m	UDL =	4.59	kN/m	$w_{f} =$	10.36	kN/m
01			16				A 11 4	
Shear:			Moment:			Deflection	Allowed:	
$R_f = V_f =$	16.33	kN	$M_{\rm f}$ =	12.87	kNm	$\Delta_{\rm allow} =$	8.76	mm
Determine Seat	ion							
Irea =	002	.3E+06	mm ⁴					
Icq								
Final Design F	rom Ste	el Handboo	k (Blue Table	s):				
Beam Size:			Shear:			Moment:		
W	200x19		$V_r =$	241	kN	$M_r =$	58	kNm
Moment of Iner	rtia:			Nomin	al Mass:			
I _x =	016.	6E+06	mm ⁴	m =	· 19	kg/m		
Final B	eam S	Size For	Gridline	8 Be	tween A	& B	W20	0x19

	10.36 kN/m	
W200x19	B18	
	3.152 m	\wedge
16.33 kN		16.33 kN

First Floor Beams Calculated Using S-Frame							
Project: Gibraltar Office Building Project	ct #: 13.001						
Design Engineer: JG I	Date: 16/03/13	No	ote: NOT DRA	WN TO SCA	ALE		
Checked By: AS							
		127/					
Gridline: A Between / & 8	ULL = 20.97	kN/m	Beam Size:	W460	Jx60		
50.95 kN/m 139.87 kN	UDL = 15.60	kN/m	$V_r \equiv$	746	kN		
W460x60 B3 V 2.569	$V_{\rm f} = 199.76$	kN	$M_r =$	397	kNm		
5.125 m m	$M_{f} = 343.93$	kNm	$I_x =$	255.0E+06	mm^4		
200.68 kN 200.33 kN	$\Delta_{\text{allow}} = 14.24$	mm	m =	60	kg/m		
	$I_{req} = 066.2E + 06$	mm^4					
	*						
Gridline: C Between 7 & 8	ULL = 42.97	kN/m	Beam Size:	W530)x74		
104.41 kN/m 121.64 kN	UDL = 31.96	kN/m	$V_r =$	1050	kN		
W530x74 B8 v 2.569	$V_{f} = 328.22$	kN	$M_r =$	562	kNm		
5.125 m m	$M_{f} = 498.65$	kNm	$I_x =$	411.0E+06	mm^4		
328.54 kN 328.23 kN	$\Delta_{\text{allow}} = 14.24$	mm	m =	74	kg/m		
	$I_{req} = 135.6E + 06$	mm^4					
Gridline: 3 Between A.3 & C	ULL = 8.27	kN/m	Beam Size:	W410)x39		
75.09 kN 20.08 kN/m	UDL = 6.15	kN/m	$V_r =$	480	kN		
W410x39 2.251 V B10	$V_{f} = 103.32$	kN	M _r =	227	kNm		
m 5.743 m	$M_{f} = 181.7$	kNm	$I_x =$	127.0E+06	mm^4		
103.32 kN 87.10 kN	$\Delta_{\text{allow}} = 15.95$	mm	m =	39	kg/m		
	$I_{req} = 036.7E + 06$	mm ⁴					

First Floor Beams Calculated Using S-Frame								
Project: Gibraltar Office Building	Project #	: 13.001						
Design Engineer: JG	Date	e: 16/03/13		No	ote: NOT DRA	WN TO SCA	ALE	
Checked By: AS								
Gridline: 4 Between B.1 & C		ULL =	10.86	kN/m	Beam Size:	W410)x39	
75.09 kN 26.38	3 kN/m	UDL =	8.08	kN/m	$V_r =$	480	kN	
W410x39 2.251 V B13		$V_{f} =$	112.07	kN	$M_r =$	227	kNm	
m 5.246 m		$M_{\rm f}$ =	185.43	kNm	$I_x =$	127.0E+06	mm^4	
112.06 kN	101.42 kN	$\Delta_{\rm allow} =$	14.57	mm	m =	39	kg/m	
		I _{req} =	036.7E+06	mm^4				
Gridline: 4 Between A & B.1		ULL =	10.86	kN/m	Beam Size:	W31()x21	
26.38 kN/m 53.20) kN	UDL =	8.08	kN/m	$V_r =$	303	kN	
W310x21 B14	v 1.187	$V_{\rm f}$ =	81.36	kN	$M_r =$	89.1	kNm	
3.502 m	m	$M_{\rm f}$ =	77.99	kNm	$I_x =$	037.0E+06	mm^4	
64.23 kN	81.36 kN	$\Delta_{\rm allow} =$	9.73	mm	m =	21	kg/m	
		I _{req} =	010.9E+06	mm^4				
		-						
Gridline: 7.5 Between A & C		ULL =	9.24	kN/m	Beam Size:	W460)x60	
22.44 kN/m 65.45	5 kN	UDL =	6.87	kN/m	$V_r =$	746	kN	
W460x60 B15	v 3.152	$V_{f} =$	139.88	kN	$M_r =$	397	kNm	
8.738 m	m	$M_{\rm f}$ =	329.74	kNm	$I_x =$	255.0E+06	mm ⁴	
121.64 kN	139.87 kN	$\Delta_{\rm allow} =$	24.27	mm	m =	60	kg/m	
		$I_{req} =$	144.4E+06	mm^4				

Engineer: AH

Castilever Windows Mar. 15/13 -ower Joists LL= 2.4 kPa x 2.5m= 6KN/m WF=20.16KN/m DL = 3.57 KPg X 2.5m = 8,925 KN/m $W_f = 1.5(6 \text{KN/m}) + 1.25(8.925 \text{KN/m}) = 20.16 \text{KN/m}$ 1.0m From Beam Diagram and Formulae from Steel Handbook Vmax = 20.16 KN Mmax = (20.16KN/m) (1.0m)2 = 10.08KN/m 2 $\Delta max = L = 2.778mm = (6 KN/m)(1.0 X 10^3)^4$ 360 8 (200,000) (Imax) 4.4448 X106 Imax = 6.0 X1012 Imax = 1,35 × 10 mm From Steelbook: (hoose (150×12 (class 3)) Vr = 138KN >Vf :: OK Mr= 19.0KN ... >MF: OK Ix=5.36×106mm4> Ireg. OK b= 48mm Mass=12Kg/m $S_L = 3.02 \text{ kPa} \times 3.5m^2 = 7.55$ $D_L = 1.0 \text{ kPa} \times 3.5m^2 = 7.55 \text{ KN/m}$ Upper Joists W= 253 KW/m 14.45 WF= 1.5(7.55KN/m) + 1.25(2.5KN/m) = 253KN/m 1.0m EA Vmgx= 14.45KN Mmax = (14.45 KN/m) (1.0m)2 = 7.225 KN:m $\Delta max = L = 2.778mm = \frac{(7.55 \text{ KN/m})(1 \times 10^3)^4}{8 (200,000) \text{ Imax}}$ 44448×10° Imax = 7,55×1012 Imax= 1.70 ×106 mm4

From Steelbook: $\frac{(L_{hoose} (150 \times 12 ((lass)))}{Vr = 138hip Vf : OK}$ $Mr = 19.0 kN \cdot n > Mf : Ok$ $Ix = 5.36 \times 10^{6} m^{4} > Ireq : Ok$ b = 48mm Mass = 12kg/m

B.3: Columns and Base Plates

Column Design Summary Table							
Project	Project: Gibraltar Office Building						
Design Engineer	: AS		Date: 27/03/13				
Checked By	: JG						
Columns	New Column Name	Size	Mass				
C1		HSS 127x127x4.8					
C8	C1	HSS 127x127x4.8	17.9 kg/m				
C18		HSS 127x127x4.8	17.7 Kg/ III				
C23		HSS 127x127x4.8					
C2		HSS 152x152x4.8					
С3		HSS 152x152x4.8					
C5	C2	HSS 152x152x4.8	21.7 1 /				
C14		HSS 152x152x4.8	21.7 kg/m				
C16		HSS 152x152x4.8					
C17		HSS 152x152x4.8					
C4		HSS 178x178x6.4					
С7		HSS 178x178x6.4					
С9		HSS 178x178x6.4					
C11		HSS 178x178x6.4	7				
C15	C3	HSS 178x178x6.4	33.4 kg/m				
C19		HSS 178x178x6.4	1				
C20	-	HSS 178x178x6.4	1				
C21		HSS 178x178x6.4	1				
C22	-	HSS 178x178x6.4	1				
C6		HSS 203x203x8.0					
C10		HSS 203x203x8.0					
C12		HSS 203x203x8.0	4/.3 kg/m				
C13	1	HSS 203x203x8.0	1				

Combined Column Factored Loads							
	Project:	Gibraltar Office Building	Project #:	13.001			
	Design Engineer:	AS	Date:	16/03/13			
	Checked By:	JG					
Column	Load from First Floor (kN)	Load from Second Floor (kN)	Load from Roof (kN)	Total Load on Column (kN)			
C1	71.4	136.6	57.5	270			
C2	156.6	191.7	106.6	455			
C3	150.4	150.4	109.0	410			
C4	275.9	308.7	146.8	735			
C5	216.7	249.3	98.1	565			
C6	105.3	374.4	518.8	1000			
C 7	165.6	253.6	107.7	530			
C 8	123.6	123.7	49.2	300			
С9	217.4	472.0	0.0	690			
C10	362.4	386.8	292.9	1042			
C11	308.2	301.2	218.2	830			
C12	482.6	505.8	262.4	1255			
C13	392.9	466.1	214.0	1075			
C14	43.5	49.2	139.0	235			
C15	39.7	162.5	457.2	660			
C16	21.8	125.4	177.8	325			
C17	49.2	235.6	170.8	460			
C18	22.8	187.3	135.8	350			
C19	0.0	152.2	0.0	155			
C20	0.0	428.4	506.9	940			
C21	0.0	239.5	0.0	240			
C22	0.0	744.3	0.0	745			
C23	0.0	0.0	92.9	95			

Column Design Per Floor					
Project	: Gibralt	ar Office Building	Projec	t #: 13.00	1
Design Engineer	:	JG	Ľ	ate: 27/03/	13
Checked By	•	AH, AS	Note: NOT	DRAWN TO SCA	\LE
270 kN	Class C	$C_{f} =$	270	kN	
\checkmark		n =	1.34		
Í		φ =	0.9		
C1 3.660 m		K =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
1	Mass:	Column Size:	HS	5 127x127x4.8	
270 kN	17.9 kg/m	$C_r =$	397	kN	
	0,				
455 kN	Class C	$C_{f} =$	455	kN	
\mathbf{V}		n =	1.34		
Ĭ		φ =	0.9		
C2 3.660 m		K =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
1	Mass:	Column Size:	HS	S 152x152x4.8	
455 kN	21.7 kg/m	C _r =	578	kN	
410 kN	Class C	$C_{f} =$	410	kN	
\checkmark		n =	1.34		
Ĭ		φ =	0.9		
C3 3.660 m		K =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
Λ Λ	Mass:	Column Size:	HS	§ 152x152x4.8	
410 kN	21.7 kg/m	$C_r =$	578	kN	
735 kN	Class C	$C_{f} =$	735	kN	
\checkmark		n =	1.34		
ĺ		φ =	0.9		
C4 3.660 m		K =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	HS	5 178x178x6.4	
735 kN	33.4 kg/m	$C_r =$	995	kN	

Column Design Per Floor					
Projec	t: Gibralta	ar Office Building	Projec	et #: 13.001	
Design Enginee	r:	JG	Γ	Date: 27/03/13	
Checked B	y:	AH, AS	Note: NOT	DRAWN TO SCALE	
565 kN	Class C	$C_{f} =$	565	kN	
\checkmark	-	n =	1.34		
Ì		φ =	0.9		
C5 3.660 m		К =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	HS	\$ 152x152x4.8	
565 kN	21.7 kg/m	$C_r =$	578	kN	
1000 kN	Class C	$C_{f} =$	1000	kN	
V	-	n =	1.34		
Ĭ		φ =	0.9		
C6 3.660 m	ľ	K =	1.0		
	ľ	L =	3.660	m	
	ľ	KL =	3.660	m	
1	Mass:	Column Size:	HS	S 203x203x8.0	
1000 kN	47.5 kg/m	$C_r =$	1530	kN	
	0,				
530 kN	Class C	$C_{f} =$	530	kN	
\checkmark		n =	1.34		
Ĭ	ľ	φ=	0.9		
C7 3.660 m		K =	1.0		
		Г=	3.660	m	
		KL =	3.660	m	
1	Mass:	Column Size:	HS	S 178x178x6.4	
530 kN	33.4 kg/m	$C_r =$	995	kN	
300 kN	Class C	$C_{f} =$	300	kN	
\checkmark	ľ	n =	1.34		
Ĭ	ľ	φ =	0.9		
C8 3.660 m	ľ	К =	1.0		
		Г=	3.660	m	
	ľ	KL =	3.660	m	
	Mass:	Column Size:	HS	S 127x127x4.8	
300 kN	17.9 kg/m	$C_r =$	397	kN	

Column Design Per Floor					
Projec	t: Gibralta	ar Office Building	Projec	et #: 13.00	1
Design Engineer	r:	JG	Γ	Date: 27/03/	'13
Checked By	y:	AH, AS	Note: NOT	DRAWN TO SCA	ALE
690 kN	Class C	$C_{f} =$	690	kN	
\checkmark	-	n =	1.34		
		φ =	0.9		
C9 3.660 m		К =	1.0		
		Г=	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	HS	S 178x178x6.4	
690 kN	33.4 kg/m	$C_r =$	995	kN	
1042 kN	Class C	$C_{f} =$	1042	kN	
\checkmark	ľ	n =	1.34		
	ľ	φ =	0.9		
C10 3.660 m		K =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	HS	S 203x203x8.0	
1042 kN	47.5 kg/m	$C_r =$	1530	kN	
830 kN	Class C	$C_{f} =$	830	kN	
\checkmark	ľ	n =	1.34		
		φ =	0.9		
C11 3.660 m		K =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
1	Mass:	Column Size:	HS	S 178x178x6.4	
830 kN	33.4 kg/m	$C_r =$	995	kN	
	0				
1255 kN	Class C	$C_{f} =$	1255	kN	
\checkmark	ľ	n =	1.34		
		φ =	0.9		
C12 3.660 m	ľ	K =	1.0		
		Γ=	3.660	m	
		KL =	3.660	m	
Γ T	Mass:	Column Size:	HS	5 203x203x8.0	
1255 kN	47.5 kg/m	$C_r =$	1530	kN	

Column Design Per Floor					
Project	: Gibralt	ar Office Building	Projec	ct #: 13.0	01
Design Engineer		JG	Ι	Date: 27/03	3/13
Checked By		AH, AS	Note: NOT	DRAWN TO SO	CALE
1075 kN	Class C	$C_{f} =$	1075	kN	
\checkmark		n =	1.34		
		φ =	0.9		
C13 3.660 m		К =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	HS	S 203x203x8.0	
1075 kN	47.5 kg/m	$C_r =$	1530	kN	
235 kN	Class C	$C_{f} =$	235	kN	
\mathbf{V}		n =	1.34		
Ĭ		φ =	0.9		
C14 3.660 m		K =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
1	Mass:	Column Size:	HS	S 152x152x4.8	
235 kN	21.7 kg/m	$C_r =$	578	kN	
660 kN	Class C	$C_{f} =$	660	kN	
\checkmark		n =	1.34		
Ĭ		φ =	0.9		
C15 3.660 m		К =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	HS	S 178x178x6.4	
660 kN	33.4 kg/m	$C_r =$	995	kN	
	0				
325 kN	Class C	$C_{f} =$	325	kN	
\checkmark		n =	1.34		
Ĭ		φ=	0.9		
C16 3.660 m		K =	1.0		
		Γ=	3.660	m	
		KL =	3.660	m	
1	Mass:	Column Size:	HS	S 152x152x4.8	
325 kN	21.7 kg/m	$C_r =$	578	kN	

Column Design Per Floor					
Project	: Gibralt	ar Office Building	Projec	ct #: 13.001	
Design Engineer		JG	Ι	Date: 27/03/13	
Checked By	:	AH, AS	Note: NOT	DRAWN TO SCALE	3
460 kN	Class C	$C_{f} =$	460	kN	
\checkmark		n =	1.34		
Í		φ =	0.9		
C17 3.660 m		К =	1.0		
		Г=	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	HS	S 152x152x4.8	
460 kN	21.7 kg/m	$C_r =$	578	kN	
	0				
350 kN	Class C	$C_{f} =$	350	kN	
\checkmark		n =	1.34		
Ĭ		φ =	0.9		
C18 3.660 m		K =	1.0		
		Γ=	3.660	m	
		KL =	3.660	m	
1	Mass:	Column Size:	HS	S 127x127x4.8	
350 kN	17.9 kg/m	$C_r =$	397	kN	
155 kN	Class C	$C_{f} =$	155	kN	
\checkmark		n =	1.34		
		φ =	0.9		
C19 3.660 m		K =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	HS	S 178x178x6.4	
155 kN	33.4 kg/m	$C_r =$	995	kN	
940 kN	Class C	$C_{f} =$	940	kN	
\checkmark		n =	1.34		
Ĭ		φ =	0.9		
C20 3.660 m		K =	1.0		
		L =	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	HS	S 178x178x6.4	
940 kN	33.4 kg/m	$C_r =$	995	kN	

Column Design Per Floor					
Project:	Gibralt	ar Office Building	Pro	ject #:	13.001
Design Engineer:		JG		Date:	27/03/13
Checked By:		AH, AS	Note: NO	OT DRAWN	N TO SCALE
240 kN	Class C	$C_{f} =$	240	kN	
\checkmark		n =	1.34		
		φ =	0.9		
C21 3.660 m		К =	1.0		
		Г=	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	H	ISS 178x178	3x6.4
240 kN	33.4 kg/m	$C_r =$	995	kN	
745 kN	Class C	$C_{f} =$	745	kN	
\checkmark		n =	1.34		
		φ =	0.9		
C22 3.660 m		К =	1.0		
		Г=	3.660	m	
		KL =	3.660	m	
	Mass:	Column Size:	F	ISS 178x178	3x6.4
745 kN	33.4 kg/m	$C_r =$	995	kN	
95 kN	Class C	$C_{f} =$	95	kN	
\checkmark		n =	1.34		
		φ =	0.9		
C23 7.320 m		K =	1.0		
		L =	7.320	m	
		KL =	7.320	m	
	Mass:	Column Size:	F	ISS 127x127	7x4.8
95 kN	17.9 kg/m	$C_r =$	141	kN	

Engineer: AH

$$\begin{array}{l} (3 - .178 \times 1/78 \times 6.4] \\ P_{4} = 940 \text{ KN} \\ b = d = 178 \text{ mn} \\ Area of plate required = 940 \text{ KN} = 6.8, 0.54.3 \text{ mn}^{2} \\ 0.85(0.65)(25/0^{2}) \\ Le+ B = (270 \text{ mn} \rightarrow A = 72.900 \text{ mn}^{2} \\ n = 270 - (118 - 6.4) = 49.2 \text{ mn} \\ \hline 2 \\ n = \frac{2}{120 \times 1.70 \times 0.9 \times 300/0^{3}} \times 19.2 \text{ mn} \\ f = \frac{2}{120 \times 1.70 \times 0.9 \times 300/0^{3}} \times 19.6 \text{ mn}^{2} \\ \hline 19.6 \text{ mn} \\ \hline 2 \\ 2.00 \times 1.70 \times 0.9 \times 300/0^{3}} \times 19.6 \text{ mn}^{3} \\ rea of plate required = 1255 \text{ KN} = 90.859.73 \text{ mn}^{2} \\ 0.85(065)(25/0^{3}) \\ Le+ B = (2.310 \times 3.0 \times 9.0 \text{ mn}^{3} \\ n = 310 - (105 - 8.0) \\ \hline 1 \\ res f = 57.5 \text{ mn} \\ \hline 1 \\ res f = \frac{2}{125 \times 1053 \times (57.5)^{2}} = \sqrt{\frac{8}{1248,687.5}} = 17.88 \text{ mn} \\ \sqrt{310 \times 310 \times 2.0} \\ \hline \end{array}$$

B.4: Cross Bracing, Moment Connections, and Diaphragms

Pate: March 21, 2013 Engineer: AH Moment Connections - Garage Door Paye 1 30.96 031, 1915KN 38,8567 42,5676KNIM 29.1533 1 BI Bz 33,6985KN G Cz Connection (D) $C1 \rightarrow 127 \times 127 \times 4.8$ BI- W310x21 BI £=5.7mm t=Yigmn $\omega = 5.1 \text{ mm}$ d = 127mm d = 303 mm 6=101 mm Class 1 (in bending) Web Connection Seat angle: Using Table 3-43 p 3-76 of Steel Handbook For a begin web of 5.1 mm and a seat length of 180mm, a 7.9 mm thick angle will provide a beam web bearing capacity of 73.8 KN >31, 1915 KN A vertical leg of 89mm with 6mm fillet welds provide a vertical leg connection capacity of 93.0 KN231.1915 KN Use \$9x76x7.9 angle x 180 mm long with 89mm ley vertical, welded

to column flange with 6mm E49xx fillet welds

Pagez those Connection Assume field-welded connection with full penetration groove welds connecting top and bottom flanges of the beam directly to the column flange. The seat angle would serve as backing for the bottom flange weld. Column Shear Capacity AD Vr=0.8 QAWFS (Clause \$ 13,4.2 Steel Handbook) h = (127 - 2×4,3) = 27.5 < 1014/NFy = 1014/NJ45=54.6 Fs=0,66 Fy=0.66845= 228mPa $V_r = 0.8 (0.9) (2) (4.3) (127) (228) = 179.3 \text{ KN}$ Shear Force = 30,96 × 1000 = 104,14KN < 179,3KN : OK 303-5.7 Thus no reinforcing of the web is required for shear. (annections @ and B) (2-5178×178× 6.4 BI and BZ -> W310X21 CZ Bland BZ t= 5.7mm 七= 5.72 d=178 w= 5.1mm d= 303mm b=101mm Class 1 (in bending) Web Rondection Kange 89 x 76 x 7.9 afge x 780 mg 103 y high 89 mg lag vetter, a tried to couns finge with 6 mm tax tillet betas

Paye 4 Lelino Shear Capacity $V_{r} = 0.8 \quad (113.4.2 - Steel + had book)$ h = (127 - 2(473)) = 20.2 < 1014/NFy = 54.6 W = 4572 5.72Fs=0,66Fy=0.66(345)= 228MPa 334 S.72 178 Vr=0.8 X0.9 X 2XAPBX ARCA X228= ARYBEN GH GH (FH) Shear force = (38, 86+42, 57 KNm) × 1000 = 268.7 KN · No stiffener required 303 Mingonal Shiftper vsedyfor 89.45KN 39.75DW (\$\$ = 127/(127+ 307)= 0,38656 Force/in/stiffher/is/ 9\$ 10,386\$6 7 2/33 KN Total stiffnet alea (required is \$ 233/10, \$ x0.300) Max of ratio (glass/1) 7 145/ 1390 = 8.3/1 y tomm wide stiffenet 75/18.37 =/9/m/n The 10mm tive stiffenet width & (101/2) - 147 - 136. Ing E Afective stiffederland x36.5×10 = 730 mm Try H= 15mm Effective stiffened aged is zx 36. Bx1S= Togsmal USE 15 x 75 St Fleners with Colum Stiffeners (C[21,30) Steel Hundbook-3 Br= \$\$\$ We (to + 10te) Fyc < The 199 > = 0.80 (2)(48) (5.7+10(48)) 0.345 = \$\$\$ 141KN To horizontal (4.1) : Is tiffeners are required for capacity of 25KAL ((121.3b)) Steel Hundbook → Tr = 7¢tc2 Fye Kab = 7 (0,9 10/5,72)2 (0:345) = 142 > 141 KN .: No Stiffener required

Page 5 GLA-82 GLI-A.2 R L 89×76×7.9 W310×21 ×1801 g. GD ~ HSS-127×127×4.8 1 GL2 - A.2 TYP 10 110 Plaks \$ \$ 75 × 150 Lg. R Shims as regid w310×21 W310×21 0 0 C T PL Gx75×1101g. 178 ×178 × 6.4

March 15, 2013 Jean Gibbons

Second Floor Diaphragm

28.8m 13.8 4.36m 5.26 K 1 35.20 m × Step1: Forces Horizontal axial load = $1.5 \text{kpa} \left(\frac{4.36\text{m}}{2} + \frac{5.26\text{m}}{2} \right) \left(35.2\text{m} \right) = 253.97 \text{kN}$ Shear length = 13.8m Linear shear force = 253.97kN = 18.4 kN/m 13.8 m Step 2: Load Path ollectorbeam shear transfer 13.8m K 35.2m 18:41 KN/m 18.49-WN KNIm Step 3: Connections Joist spacing: Deck profile: (This is a composite deck 1800 mm = 1.8 mm use table on pg. 57 P 3615 19mm puddle weld Support Pastener: Side lap Pastener: button punch

The following schedule will meet the load requirements:

Weld 19 mm Pattern 36/4	connections
Button punch @ GOOm o/c	required

0.70mm	N Deck thickness
	P3615

Long Side of the Building - The dech connectors have been chosen with the factored loads acting in the direction of the shortest side of the building. The resistance of the diaphrogen must be verified in both directions of the building. Based on fastener schedule chosen, the resistance in the longest side of the building is:

Resistance provided Length 13m Total Resistance 42.3 N/mm 549.9 KN

- The summation of the resistance is 549.9kN which is more than the required axial load of 253.97 kN

Connectors at Perimeter Horizontal oscial load: 254 KN Shear length: 13.8m Linear shear force: 18.4 KN/m

Factored puddle weld resistance for 0.76mm deck is 4.75 kN/weld (pg. 15)

Spacing Required.

Based on the shear force: 4.73 × 1000 = 258 mm

Based on 36/4 pattern: 305 mm

The spacing of the 19mm puddle welds on the perimeter structural members is chosen by selecting the lesser of the two spacings. Therefore, 250 mm is used to have an effective diaphrogen. (2)

Dellection Ridigity = G'= 426 KN/mm (P3615 composite)

Uniform loading: $q = 2 \times 254 = 14.4 \text{ kN/m}$ 35.2

Shear deformation: $A_{5} = QL^{2} = (14. HkN/m)(35.2m)^{2}$ 8BG' 8(13.8m)(426kN/mm) = 0.379mm

Steel area of section : A = 5890 mm²

Inertia of system: $T = 2A \left(\frac{B}{2} \right)^2 = 2(5890 \text{ mm}^2) \left(\frac{13.8 \text{ m}}{2} \right)^2 = 0.561 \text{ m}^4$

Bending deflection: $A_B = 591^{4} = 5(14.4)(35.8)^{4} = 2.74 \text{ mm}$ 384 [200000)(0.561)

A= Ab+ As

= 2.74 mm + 0. 379 mm

= 3.12 mm

3

Upper Roof Diaphragm

Stepl: Forces Horizontal axial lood: 1.5 kpa $\left(\frac{4.36m}{2}\right)$ (28.8m) = 94.2 kN Shear length: 13.8m Linear shear force: 94.2kN = 6.8 kN/m 13.8m

Step 2: Load Path

collector user transfer tength 13.8m

28.8m 6.8 NN/m 6.8kN/m

Step 3: Connectors

Joist spacing: 1.5m Dech profile: P3G15 Support fasteners: 19mm puddle weld Side-lap fasteners: Button punch

Weld 19mm Pattern 36 connections Button punch @ 150 o/c required

> 0.76mm Dech thickness P3G15

> > 4

Long Side of Building -Based on fastener schedule chosen, the resistance in the longest side of the building is:

Resistance provided	Length	Total Resistance
9.1 hN/m	28.8m	262.KN

- The resistance provided = 262 kN > 94.2 kN = required axial load .. Oh!

Connectors of Perimeter -Factored puddle weld resistance for 0.76mm deck = 4.75 kN/weld

-Spacing Required Based on the shear force: 4:75 6.8 × 1000 = 699 mm

Based on 36/7 pattern: 152 mm

To have an effective diaphragm use 150mm spacing for puddle welds

 $\frac{\text{Deflection}}{\text{Bidigity}} = G' = 9.7 \times 10^3 \text{ N/mm}$

Uniform bading: $q = \frac{2 \times 94.2}{28.8} = 6.54 \text{ kN/m}$

Shear deformation: $\Delta_{5} = \frac{9L^{2}}{8BG'} = \frac{(6.54 \text{ kN/m})(28.8)^{2}}{8(13.8m)(9.7\times10^{3})} \times 1000 = 5.07 \text{ mm}$

Steel area of section: A = 5890 mm²

Inertia of system: $T = 2A(B)^2 = 2(5890 \text{ mm}^2)(13.8 \text{ m})^2 = 0.561 \text{ m}^4$

Bending deflection: $A_{B} = \frac{50 L^{4}}{384 EI} = \frac{5(6.54 \text{ kN/m})(28.8 \text{ m})^{4}}{384 (200000)(0.56 \text{ lm}^{4})} = 0.522 \text{ mm}$

5

A= AB + AS = 5.07 + 0.522 = 5.59 mm

Premier Engineering Consultants Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, NL, A1B 3X5 PremierEngineering@live.ca

B.5: Pedestals

Example 8.8

A short column in a braced frame support an axial factored load $P_f = 1920$ kN and an axial factored moment $M_f = 170$ kN·m. Design a tied column cross section to support the given loads. Use $f_v = 400$ MPa and $f'_c = 30$ MPa.

Solution:

1. <u>Select the trial size and trial reinforcement.</u>

The design of a short column is an iterative process. In general, the most economical range of $\rho_{(TOTAL)}$ is 1% to 2%. This ratio could be used if there are no limitations set on the column dimensions (for example by the architect due to floor space in high-rise buildings).

The axial column capacity, P_{r0} , can be found using Equation 8.4:

$$P_{r0} = \alpha_1 \phi_c f'_c \left(A_g - A_s \right) + \phi_s f_y A_s \tag{8.4}$$

To establish the first trial value for the column dimensions, we assume $\rho = 0.015$ for the first trial value. We set $P_f = P_{r(max)} = 0.80 P_{r0}$

$$\therefore (1920 \times 10^3) / 0.8 = 0.805 \times 0.65 \times 30 (A_g - 0.015 A_g) + 0.85 \times 400 \times (0.0015 A_g)$$

 $\Rightarrow A_{g (TRIAL)} = 116 720 \text{ mm}^2 \text{ or } 341 \text{ mm square}$

Note that since moments act on this column, Equation (8.4) will tend to underestimate the column size. Choose a 400 mm square column.

<u>Selected trial column</u>: try a 400 mm x 400 mm tied column, $A_g = 160000 \text{ mm}^2$, with bars in two faces, $f_y = 400 \text{ MPa}$ and $f'_c = 30 \text{ MPa}$. Assume that the longitudinal bars are No. 25 and the ties are No.10, with 50 mm clear cover to the main vertical reinforcement to satisfy the requirement for a 2-hour fire rating.

2. <u>Compute γ</u>.

The interaction diagrams in design aids of the handbook are each drawn for a particular value of the ratio, γ , of the distance between the centres of the outside layers of steel to the overall depth of the column.

$$\gamma = \frac{400 - 2(50 + 25.2/2)}{400} = 0.69$$

We use $\gamma = 0.70$. In other cases, we may have to interpolate between the different values of γ .

3. Use the interaction diagrams to determine $\rho_{(TOTAL)}$

The interaction diagrams are entered using $\frac{P_r}{A_g}$ (MPa) and $\frac{M_r}{A_g h}$ (MPa).

Assume that $P_r = P_f$ and $M_r = M_f$:

$$\frac{P_r}{A_a} = \frac{1920 \times 10^3 (\text{N})}{160\ 000 (\text{mm}^2)} = 12.0 \text{ MPa}$$

$$\frac{M_r}{A_r h} = \frac{170 \times 10^6 (\text{N.mm})}{160\ 000 (\text{mm}^2) \times 400 \text{mm}} = 2.66 \text{ MPa}$$

From Figure 7.5.7 of the concrete handbook design aid (interaction diagram for columns with bars in two *end faces*, $f_{\gamma} = 400$ MPa and $f'_{c} = 30$ MPa, and $\gamma = 0.70$).

$$\rho_{(TOTAL)} = 0.013$$

Note that if the value of $\rho_{(TOTAL)}$ computed here exceeds 0.03 to 0.04, a larger section should be chosen. If $\rho_{(TOTAL)}$ is less than 0.01 (1%), either use 0.01 (the minimum allowed by A23.3 Cl. 10.9.1) or re-design using a smaller cross section.

4. Select the reinforcement

$$A_{s (TOTAL)} = \rho_{(TOTAL)} A_g$$

= 0.013 x 400 x 400 mm² = 1940 mm²

An even number of bars will be chosen so that the reinforcement is symmetrical about the bending axis. Select 8 No. 20 bars, $A_{s(TOTAL)} = 2400$ mm, placing 4 bars at each face. This also satisfies the maximum clear distance between the longitudinal bars in a column (A23.3 Cl. 7.4.1.3) which is 500 mm.

5. <u>Select the ties:</u>

Select the ties. From A23.3 Cl. 7.6.5.1, the ties must have a diameter at least equal to 0.3 × 20 mm = 6 mm. We shall use No. 10 ties. From A23.3 Cl. 7.6.5.2, the spacing shall not exceed the smallest of:

i. 16 longitudinal bar diameters	= 16 × 20	= 320 mm
----------------------------------	-----------	----------

- ii. 48 tie diameters = 48 × 11.3 = 542 mm
- iii. the least dimension of the column = 400 mm

Thus, the maximum spacing is 320 mm, say 300 mm.

6. Tie arrangement

- Clause 7.6.5.5 of A23.3–04 states that "Ties shall be arranged so that every corner and alternate longitudinal bar shall have lateral support provided by the corner of a tie having an included angle of not more than 135°, and no bar shall be farther than 150 mm clear on either side from such a laterally supported bar".
- Fig. N7.5.5 illustrates tie arrangements which satisfy the requirements for lateral support of column bars.

- The tie arrangement for the current example is shown in the following figure:

Tue arrangement for Example 8.8

		Co	ncrete Pe	desta	l Desi _{	zn		
	Project	:: Gibraltar O	ffice Building			Project #: 2	13.001	
Design	Engineer	:: JG				Date: 1	16/03/20)13
Cł	necked by	/: AS						
St	ructure I	Description:		C1	Pedestal (Sh	10 r t Column)		
Basic Data:			r			$a_g =$	20	mm
Steel Size:	1(0 M	Stirrup Size:	1() M	$t'_c =$	25	MPa
$d_b =$	11.3	mm	$d_{b,s} =$	11.3	mm	$f_y =$	400	MPa
$A_b =$	100	mm ²	$A_{b,s} =$	100	mm ²	$\Phi_{\rm c}$ =	0.65	
$\Phi_s =$	0.85		$P_f =$	350	kN	$M_{\rm f}$ =	0	kNm
Select Colum	n Size:					1		
e =	1.5	%	$P_{r0} =$	437.5	kN	$\alpha_1 =$	0.8125	
$P_{r0} =$	18.10508	$A_g \rightarrow A_g =$	24164 m	1m ²		$b_1 = b_2 =$	155	mm
$b_1 = b_2 =$	200	mm	A _g =	40000	mm ²	b' _c =	40	mm
Select Reinfo	rcement							
γ =	0.54		$\gamma_{Table} =$	0.60		Ta	able 7.5.3	3
$P_r/A_g =$	8.8	MPa	$M_r/(A_gh) =$	0.00	MPa	$Q_{\rm T} =$	0.0	%
$Q_{\rm T}$ is	0	KAY!	$Q_{\rm T} =$	1	%	$A_{s(TOTAL)} =$	400	mm ²
n =	4.00	Bars	n =	4	Bars	$A_{s,total} =$	400	mm ²
s _{min} =	30	mm	s =	100	mm			
						·		
Select Stirrup	s:							
$d_{bs(min)} =$						h –	1000	
0,5(1111)	3.39	mm	s _{max} =	180.8	mm	n _c –	1000	111111
n =	3.39 5.53	mm Stirrups	s _{max} = n =	180.8 6	mm Stirrups	$n_c =$	1000 170	mm
n =	3.39 5.53	mm Stirrups	s _{max} = n =	180.8 6	mm Stirrups	$n_c - s =$	1000 170	mm
n = Final P1 Pede	3.39 5.53	mm Stirrups ign:	s _{max} = n =	180.8 6	mm Stirrups	s =	1000 170	mm
$n =$ Final P1 Pede $b_1 =$	3.39 5.53 estal Des 200	mm Stirrups ign: mm	$s_{max} =$ n = $b_2 =$	180.8 6 200	mm Stirrups mm	$h_c =$	1000 170 1000	mm
$n =$ Final P1 Pede $b_1 =$ Reinforcement	3.39 5.53 estal Des 200 nt:	mm Stirrups ign: mm	$s_{max} =$ n = $b_2 =$	180.8 6 200	mm Stirrups mm	$h_c =$	1000 170 1000	mm
$n =$ Final P1 Pede $b_1 =$ Reinforcemen	3.39 5.53 estal Des 200 nt: n =	mm Stirrups ign: mm = 4	$s_{max} =$ $n =$ $b_2 =$ 10 N	180.8 6 200 [Bars	mm Stirrups mm @ s =	$h_c = \frac{100}{100}$	1000 170 1000 mm	mm
$n =$ Final P1 Pede $b_1 =$ Reinforcemen Stirrups:	3.39 5.53 estal Des 200 nt: n =	mm Stirrups ign: mm = 4	$s_{max} =$ $n =$ $b_2 =$ 10 M	180.8 6 200 I Bars	mm Stirrups mm @ s =	$h_{c} =$ $h_{c} =$ 100 m	1000 170 1000 mm	mm

		Co	ncrete Pe	desta	l Desi _{	zn		
	Project	: Gibraltar O	ffice Building			Project #: 1	3.001	
Design	Engineer	:: JG				Date: 1	16/03/20)13
Cł	hecked by	: AS						
<u> </u>	·				D 1 (.1 (C)			
51	ructure 1	Jescription:		C2	Pedestai (Sn	iort Column)		
Basic Data:						$a_g =$	20	mm
Steel Size:	1,	5 M	Stirrup Size:	11	0 M	$\mathbf{f}_{c} =$	25	MPa
d _b =	16	mm	$d_{b,s} =$	11.3	mm	$f_y =$	400	MPa
A _b =	200	mm ²	$A_{b,s} =$	100	mm ²	$\Phi_{\rm c}$ =	0.65	
$\Phi_s =$	0.85		$P_f =$	567	kN	$M_{\rm f} =$	0	kNm
Select Colum	in Size:							
e =	1.5	0⁄0	$P_{r0} =$	708.75	kN	$\alpha_1 =$	0.8125	
$P_{r0} =$	18.10508	$A_g \rightarrow A_g =$	39146 n	nm ²		$b_1 = b_2 =$	198	mm
$b_1 = b_2 =$	250	mm	$A_g =$	62500	mm ²	b' _c =	40	mm
Select Reinfo	rcement:	•	τ			1		
$\gamma =$	0.62		$\gamma_{Table} =$	0.60		Ta	ıble 7.5.2	2
$P_r/A_g =$	9.1	MPa	$M_r/(A_gh) =$	0.00	MPa	$\varrho_{\rm T}$ =	0.0	%
$Q_{\rm T}$ is	0	KAY!	<i>Q</i> _T =	1	%	$A_{s(TOTAL)} =$	625	mm ²
n =	3.13	Bars	n =	4	Bars	$A_{s,total} =$	800	mm ²
s _{min} =	30	mm	s =	125	mm			
Select Stirrup	1.0					<u> </u>	1000	
$d_{b,s(min)} =$	4.8	mm	s _{max} =	250	mm	h _c =	1000	mm
n =	4.00	Stirrups	n =	5	Stirrups	s =	215	mm
Final P2 Ped	estal Des	sign:						
b ₁ =	250	mm	b ₂ =	250	mm	h _c =	1000	mm
Reinforceme	nt:							
	n =	= 4	15 N	1 Bars	<i>(a)</i> s =	125 1	nm	
Stirrups:	n =	= 4	15 N	A Bars	@ s =	125	nm	
Stirrups:	n = 	= 4	15 I 	A Bars I Stirrups	(a) s =	125 1 215 1	nm nm	

		Co	ncrete Pe	desta	l Desiş	zn		
	Project	:: Gibraltar O	ffice Building			Project #: 7	13.001	
Design	Engineer	:: JG				Date: 2	16/03/20	013
Cl	necked by	r: AS						
						<u> </u>		
St	ructure I	Description:		С3	Pedestal (Sh	ıort Column)		
Basic Data:						$a_{\alpha} =$	20	mm
Steel Size:	2	0 M	Stirrup Size:	1	0 M	$\mathbf{f}_{c} =$	25	MPa
$d_b =$	19.5	mm	$d_{b,s} =$	11.3	mm	$f_v =$	400	MPa
$A_{b} =$	300	mm ²	$A_{b,s} =$	100	mm ²	$\Phi_{\rm c} =$	0.65	1 111 u
$\Phi_s =$	0.85		$P_{f} =$	940	kN	$M_{\rm f} =$	0	kNm
						<u>.</u>		
Select Colum	n Size:							
e =	1.5	%	$P_{r0} =$	1175	kN	α1 =	0.8125	
$P_{r0} = 18.10508 A_g \rightarrow A_g = 64899 mm^2$ $b_1 = b_2 = 255 m^2$					mm			
$b_1 = b_2 =$	300	mm	A _g =	90000	mm ²	b' _c =	40	mm
Select Reinfo	rcement	•					·	
γ =	0.67		$\gamma_{Table} =$	0.70		T	able 7.5.3	3
$P_r/A_g =$	10.4	MPa	$M_r/(A_gh) =$	0.00	MPa		0.0	%
$Q_{\rm T}$ is	0	KAY!	$Q_{\rm T} =$	1	%	$A_{s(TOTAL)} =$	900	mm ²
n =	3.00	Bars	n =	4	Bars	$A_{s,total} =$	1200	mm ²
s _{min} =	30	mm	s =	150	mm			
Select Stirrup	s:		π			1		
$d_{b,s(min)} =$	5.85	mm	s _{max} =	300	mm	h _c =	1000	mm
n =	3.33	Stirrups	n =	4	Stirrups	s =	291	mm
Einal D3 Dad	cotol Dec	ion						
$h_{\rm c} =$	300	ngn:	b _e =	300	mm	h =	1000	
Reinforceme	nt•			500		c	1000	
Remitricente	n =	= 4	20 N	A Bars	(a) s =	150	mm	
Stirrups:					<u> </u>			
	n =	= 4	10 N	A Stirrup	s @ s =	291	mm	

		Co	ncrete Pe	edesta	l Desig	<u>gn</u>		
	Project	: Gibraltar O	ffice Building			Project #: 1	13.001	
Design	Engineer	:: JG				Date: 1	16/03/20	013
Cł	necked by	: AS						
					- 1 (01	~ • ``		
St	ructure I	Description:		C4 .	Pedestal (Sh	nort Column)		
Basic Data:						$a_{\alpha} =$	20	mm
Steel Size:	21	0 M	Stirrup Size:	1() M	$\mathbf{f}_{c} =$	25	MPa
$d_{\rm b} =$	19.5	mm	$d_{bs} =$	11 3	mm	$f_v =$	400	MPa
$A_{\rm b} =$	300	mm ²	$A_{b,s} =$	100	mm ²	$\Phi_{\rm c} =$	0.65	1 111 a
$\Phi_s =$	0.85		$P_{f} =$	1255	kN	$M_{\rm f} =$	0	kNm
Select Colum	n Size:							
e =	1.5	0/0	$P_{r0} =$	1568.75	kN	$\alpha_1 =$	0.8125	
$P_{r0} =$	18.10508	$A_g \rightarrow A_g =$	86647 r	nm ²		$b_1 = b_2 =$	294	mm
$b_1 = b_2 =$	350	mm	$A_g =$	122500	mm ²	b' _c =	40	mm
Select Reinfo	rcement							
Select Reinfo γ =	rcement 0.72	· · · · · · · · · · · · · · · · · · ·	$\gamma_{Table} =$	0.80		T	able 7.5.3	3
Select Reinfo $\gamma =$ $P_r/A_g =$	0.72 10.2	MPa	$\frac{\gamma_{Table}}{M_r/(A_gh)} =$	0.80	MPa	$T_{\rm T}$	able 7.5.3	3
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is	rcement: 0.72 10.2 0	MPa KAY!	$\frac{\gamma_{Table}}{M_r/(A_gh)} = \frac{\rho_T}{\rho_T} = \frac{\rho_T}{\rho_T}$	0.80 0.00 1	MPa %	$T_{a} = \frac{P_{a}}{P_{a}}$	able 7.5.3 0.0 1225	3 % mm ²
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is $n =$	rcement: 0.72 10.2 0 4.08	MPa KAY! Bars	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$	0.80 0.00 1 6	MPa % Bars	$T_{a}^{T} = A_{s(TOTAL)} = A_{s,total} = $	able 7.5.3 0.0 1225 1800	3 % mm ² mm ²
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is n = $s_{min} =$	orcement: 0.72 10.2 0 4.08 30	MPa KAY! Bars mm	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$	0.80 0.00 1 6 116.66667	MPa % Bars mm	$C_{T} = \frac{P_{T}}{P_{s(TOTAL)}} = \frac{P_{s(TOTAL)}}{P_{s,total}} = \frac{P_{s,total}}{P_{s,total}} = \frac{P_{s,total}}{P_{s,total}}$	able 7.5.3 0.0 1225 1800	3 % mm ² mm ²
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is n = $s_{min} =$	rcement: 0.72 10.2 0 4.08 30	MPa KAY! Bars mm	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$	0.80 0.00 1 6 116.66667	MPa % Bars mm	$T_{a} = A_{s(TOTAL)} = A_{s,total} = $	able 7.5.3 0.0 1225 1800	3 ⁰ / ₀ mm ² mm ²
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is n = $s_{min} =$ Select Stirrup	0.72 10.2 4.08 30	MPa KAY! Bars mm	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$	0.80 0.00 1 6 116.66667	MPa % Bars mm	$T_{a}^{T} = A_{s(TOTAL)} = A_{s,total} = $	able 7.5.3 0.0 1225 1800	3 % mm ² mm ²
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is n = $s_{min} =$ Select Stirrup $d_{b,s(min)} =$	0.72 10.2 0 4.08 30	MPa KAY! Bars mm	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$ $s_{max} =$	0.80 0.00 1 6 116.66667 312	MPa % Bars mm	$T_{c} = A_{s(TOTAL)} = A_{s,total} = h_{c} =$	able 7.5.3 0.0 1225 1800 1000	3 % mm ² mm ² mm
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is n = $s_{min} =$ Select Stirrup $d_{b,s(min)} =$ n =	orcement: 0.72 10.2 4.08 30 9s: 5.85 3.21	MPa KAY! Bars mm Stirrups	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$ $s_{max} =$ $n =$	0.80 0.00 1 6 116.666667 312 4	MPa % Bars bars mm	T_{c} $Q_{T} =$ $A_{s(TOTAL)} =$ $A_{s,total} =$ $h_{c} =$ $s =$	able 7.5.3 0.0 1225 1800 1000 291	3 % mm ² mm ² mm mm
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is n = $s_{min} =$ Select Stirrup $d_{b,s(min)} =$ n =	0.72 10.2 0 4.08 30 9s: 5.85 3.21	MPa KAY! Bars mm Stirrups	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$ $s_{max} =$ $n =$	0.80 0.00 1 6 116.66667 312 4	MPa % Bars mm stirrups	T_{a} $Q_{T} =$ $A_{s(TOTAL)} =$ $A_{s,total} =$ $h_{c} =$ $s =$	able 7.5.3 0.0 1225 1800 1000 291	3 % mm ² mm ² mm
Select Reinfo $\gamma =$ $P_r/A_g =$ ϱ_T is n = $s_{min} =$ Select Stirrup $d_{b,s(min)} =$ n = Final P4 Pede	orcement: 0.72 10.2 0 4.08 30 •s: 5.85 3.21 estal Des	MPa KAY! Bars mm Stirrups	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$ $s_{max} =$ $n =$	0.80 0.00 1 6 116.66667 312 4	MPa % % Bars mm % % % % % % % % % % % % % % % % % %	T_{c} $Q_{T} =$ $A_{s(TOTAL)} =$ $A_{s,total} =$ $h_{c} =$ $s =$	able 7.5.3 0.0 1225 1800 1000 291	3 % mm ² mm ² mm mm
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is n = $s_{min} =$ Select Stirrup $d_{b,s(min)} =$ n = Final P4 Pedo $b_1 =$	orcement: 0.72 10.2 0 4.08 30 •s: 5.85 3.21 •stal Des 350	MPa KAY! Bars mm Stirrups ign: mm	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$ $s_{max} =$ $n =$ $b_2 =$	0.80 0.00 1 6 116.666667 312 4 350	MPa % Bars mm Stirrups مسس	T_{c} $Q_{T} =$ $A_{s(TOTAL)} =$ $A_{s,total} =$ $h_{c} =$ $s =$ $h_{c} =$	able 7.5.3 0.0 1225 1800 1000 291	3 % mm ² mm ² mm mm
Select Reinfo $\gamma =$ $P_r/A_g =$ ϱ_T is n = $s_{min} =$ Select Stirrup $d_{b,s(min)} =$ n = Final P4 Pedo $b_1 =$ Reinforcement	orcement: 0.72 10.2 0 4.08 30 9s: 5.85 3.21 estal Des 350 nt:	MPa KAY! Bars mm Stirrups ign: mm	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$ $s_{max} =$ $n =$ $b_2 =$ $Q_T = 0$	0.80 0.00 1 6 116.66667 312 4 350 350	MPa % Bars mm stirrups	T_{a} $Q_{T} =$ $A_{s(TOTAL)} =$ $A_{s,total} =$ $h_{c} =$ $h_{c} =$ $h_{c} =$ $h_{c} =$	able 7.5.3 0.0 1225 1800 1000 291	3 % mm ² mm ² mm mm
Select Reinfo $\gamma =$ $P_r/A_g =$ Q_T is n = $s_{min} =$ Select Stirrup $d_{b,s(min)} =$ n = Final P4 Pedo $b_1 =$ Reinforcement	orcement: 0.72 10.2 0 4.08 30 0 5.85 3.21 estal Des 350 nt: n =	MPa KAY! Bars mm Stirrups	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$ $s =$ $h_{Table} =$ h	0.80 0.00 1 6 116.666667 312 4 312 4 350 X Bars	MPa%BarsmmStirrupsمس	T_{c} $Q_{T} = 0$ $A_{s(TOTAL)} = 0$ $A_{s,total} = 0$ $h_{c} = 0$ $h_{c} = 0$ $h_{c} = 0$ $117 $	able 7.5.3 0.0 1225 1800 1000 291 1000	3 % mm ² mm ² mm mm
Select Reinfo $\gamma =$ $P_r/A_g =$ ϱ_T is n = $s_{min} =$ Select Stirrup $d_{b,s(min)} =$ n = Final P4 Pedo $b_1 =$ Reinforcement Stirrups:	orcement: 0.72 10.2 0 4.08 30 9s: 5.85 3.21 estal Des 350 nt: n = n =	MPa KAY! Bars mm Stirrups ign: mm ign: c f f f f f f f f f f f f f f f f f f	$\gamma_{Table} =$ $M_r/(A_gh) =$ $Q_T =$ $n =$ $s =$ $s_{max} =$ $n =$ $b_2 =$ 20 M 10 M	0.80 0.00 1 6 116.66667 312 4 312 4 350 VI Bars	MPa % Bars mm Stirrups mm (@ s =	T_{c} $Q_{T} = A_{s(TOTAL)} = A_{s,total} = A_{s,total}$	able 7.5.3 0.0 1225 1800 1000 291 1000 mm	3 % mm ² mm ² mm mm

B.6: Spread Footings

Example 2.2 – Design of a Spread Footing

A rectangular column, 450×450 mm carries a service dead load of 1800 kN and a service live load of 1200 kN. The column is reinforced with eight No. 30M bars. The foundation depth recommended by the geotechnical engineer is 1.6 m (below finished grade). At that level, the geotechnical resistance is 300 kPa at the serviceability limit state and the factored geotechnical resistance is 650 kPa at the ultimate limit state. The top of the footing will be covered with fill having a unit weight of 17 kN/m³. The basement floor is 150 mm thick. The specified live load on the basement floor is 4.8 kPa. Design a footing for the column. Use $f_y = 400$ MPa. For the column, $f_c' = 30$ MPa. For the footing, $f_c' = 25$ MPa and $a_g = 20$ mm.

1. Size of footing

 Estimate the thickness of the footing between one and two times the width of the column, say 700 mm (rule of thumb).

In this case, the thickness of the fill = 1.6 - 0.7 - 0.15 = 0.75 m.

 $\Sigma w = w_1 (LL \text{ on } SOG) + w_2 (SOG \text{ sw}) + w_3 (\text{soil}) + w_4 (\text{footing sw})$ $= 4.80 + 0.150 \times 24.0 + 17.0 \times 0.75 + 0.7 \times 24.0$ = 4.80 + 3.6 + 12.75 + 16.8 = 38.0 kPa $q_{sa(\text{NET})} = q_{sa} - \Sigma w = 300 - 38 = 262 \text{ kPa}$ $P_{Service} = 1800 + 1200 = 3000 \text{ kN}$

Required area of footing, $A_F = \frac{P_{Service}}{q_{sa(NET)}} = \frac{3000}{262} = 11.45 \text{ m}^2$

ENGI 6707 (F11)

Use
$$3.4 \times 3.4 \text{ m}$$
 footing $\Rightarrow A_F = 11.56 \text{ m}^2$
 $P_f = 1.25 \times 1800 + 1.5 \times 1200 = 4050 \text{ kN}$
 $q_{sf} = \frac{P_f}{A_F} = \frac{4050}{3.4 \times 3.4} = 350 \text{ kPa} = 0.350 \text{ N/mm}^2 < q_{su} = 650 \text{ kPa} (::OK)$

1. <u>Determining the Foundation Depth</u>

<u>One–way shear</u>

- For one–way shear, the critical section is located at a distance "d_v" from the column face:
- $V_f = 0.350 \times 1.0 \times (1475 d_v)$

 $= 0.35 (1475 - d_v)$

$$- V_c = \phi_c \,\lambda \,\beta \,\sqrt{f_c' \,b_w \,d_v}$$

Assuming that $a_b < 3d_v$, hence $\beta = 0.21$ (Cl. 11.3.6.2)

$$V_c = 0.65 \times 1.0 \times 0.21 \times \sqrt{25} \times 1.0 \times d_v$$

Equating V_f and V_c equations yields

*d*_v = 500 mm.

- Hence, $a_b < 3d_v$, and therefore the assumption of using is $\beta = 0.21$ correct.

 $- d = d_v / 0.9 = 556$ mm.

- Note that If $a_b > 3d_v$, then we have to recalculate d_v using $\beta = 230/(1000 + d_v)$.

Two-way shear

Critical section located at a distance *d*/2 from column face.

$$- V_{f} = 0.350 \Big[(3400)^{2} - (450 + d)^{2} \Big]$$
$$- V_{r} = v_{r} b_{0} d = 0.38 \phi \lambda \sqrt{f_{c}'} b_{0} d$$
$$= 0.38 \times 1.0 \times 0.65 \times \sqrt{25} \Big[4 (450 + d) \Big] \times d$$

- Equating V_f and V_c yields d = 660 mm
- You have to also check other Equations According to Clause 13.3.4.1. In this clause, the factored shear stress resistance, v_r, is the smallest of :

(a)
$$V_r = V_c = 0.38\lambda \phi_c \sqrt{f_c'}$$

(b)
$$v_r = v_c = \left(1 + \frac{2}{\beta_c}\right) 0.19 \lambda \phi_c \sqrt{f'_c}$$
, where β_c is

the ratio of long side to short side of the column.

(c)
$$v_r = v_c = \left(\frac{\alpha_s}{b_o/d} + 0.19\right) \lambda \phi_c \sqrt{f_c'}$$
, where

 $\alpha_s = 4$ for interior columns, 3 for edge columns, and 2 for corner columns.

- If the effective depth, *d*, used in two-way shear calculations exceeds 300 mm, the value of v_r obtained from the previous equations shall be multiplied by 1300/(1000 + *d*). However, this parameter applies only to the design of footings or mat foundations where the distance from the point of zero shear to the face of the column, pedestal or wall is greater than 3*d* (Cl. 13.3.4.4), i.e. where $a_b > 3d$. In this example, $a_b < 3d$, therefore, we do not need to recalculate v_r .
- Two–way shear governs; use average *d* = 660 mm.
- Foundation thickness, $h(h_f \text{ or } t_f)$:
 - h = 660 + 75 mm (cover) + 25 mm (assumed bar diameter)
 - = 760 mm (Use 800 mm).
- Therefore, the average d = 800 75 25 = 700 mm

Two-way shear

2. Foundation Depth

- Since h = 800 mm, and using 75 mm cover and assuming 25 M bars:

d Average	=	800 - 75 -	25.2	=	700 mm (for shear calculations)
d Longitudinal	=	800 - 75 -	25.2 - 25.2/2	=	687 mm
d _{Transverse}	=	800 - 75 -	25.2/2	=	712 mm

3. Design for flexure

- Critical section at the column face as per Clause 15.4.3.
- Since it is one way action, design for 1 meter strip.

$$M_f = 0.350 \times 1000 \times \frac{(1475)^2}{2}$$

= 380.7 × 10⁶ N.mm (per meter)

$$M_r = k_r b d^2 \times 10^{-6}$$
 (Table 2.1)

$$k_r = \frac{380.7 \times 10^6}{1000 \times (687)^2} = 0.81$$

 ρ = 0.25% and $\rho_{\rm max}$ = 2.24% (per meter)

Note that ρ is per meter, hence the reinforcement required for the full width of the footing is:

$$A_{\rm s}$$
 (per foundation width) = ρbd
= 0.81 × 34000 × 687 = 5727 mm²

 $A_{s,min} = 0.2\% A_g = 0.002 \times 3400 \times 800 = 5440 \text{ mm}^2$ (does not govern)

Select 12 No. 25 M bars, $A_{s, Actual} = 6000 \text{ mm}^2$

Spacing
$$\approx \frac{3400}{12}$$
 = 283 mm < 3*h* = 2400 mm or 500 mm ∴ O.K. (Clause 7.4.1.2)

4. Check Development for Tension Reinforcement

-
$$\ell_d = 0.45 \times 1 \times 1 \times 1 \times 1 \times \frac{400}{\sqrt{25}} \times 25.2 = 907 \text{ mm}$$
 (or 900 mm from Table 9.10).

- Available length = (3400 450)/2 = 1400 mm (> ℓ_d , ∴ O.K).
- If ℓ_d is not ok, try to:
 - 1. Reduce the bar size (since $k_4 = 0.8$ for 20M and smaller bars)
 - 2. Use a 90° hook (refer to Table 3.6 for development length of a hook, ℓ_{dh}).
 - 3. Increase footing length.

5. Design the Column–Footing Joint (A23.3, Clause 15.9)

(i) For the footing (A23.3, Clause 10.8.1)

- Footing bearing: $B_{r, \text{ footing}} = 0.85 \phi_c f'_c A_1 \sqrt{\frac{A_2}{A_1}} + \phi_s f_y A_{\text{dowel}}$; where $\sqrt{\frac{A_2}{A_1}} \le 2.0$
- $-A_1 = 450 \times 450 = 0.202 \times 10^6 \text{ mm}^2$
- $-A_2 = 3400 \times 3400 = 11.56 \times 10^6 \text{ mm}^2$

$$-\sqrt{\frac{A_2}{A_1}} = \sqrt{\frac{11.56 \times 10^6}{0.202 \times 10^6}} = 7.6 \le 2.0 \Rightarrow \text{ Use } 2.0$$

- $B_{r, \text{ footing}} = 0.85 \times 0.65 \times 25 \times 0.202 \times 10^6 \times 2.0 = 5594 \text{ kN} > P_f = 4050 \text{ kN}, (∴O.K).$

(ii) For the Column

- Column bearing: $B_r = 0.85 \phi_c f'_c A_1 + \phi_s f_y A_{dowel}$
- $B_{r, \text{ column}} = 0.85 \times 0.65 \times 30 \times (450)^2 = 3356 \text{ kN} < P_f = 4050 \text{ kN}, (∴ \text{ NOT O.K}).$
- Provide dowel for forces = 4050 3356 = 694 kN

$$- A_{s, \text{ dowels}} = \frac{\text{Force}}{\phi_{s} f_{y}} = \frac{694}{0.85 \times 400} = 2040 \text{ mm}^{2}$$

Use 6 No. 25 Bars with $A_{s, \text{ dowels}}$ = 3000 mm² (note that we always use a minimum of 4 bars).

- $A_{s, min}$ for dowels (Clause 15.9.2.1) = 0.005 A_{column} = 0.005 × (450)² = 1013 mm²

(iii) Development of Reinforcement at the Column–Footing Connection

- The dowels must extend into the footing a compression development length for a 25M bar, were ℓ_{db} (Clause A12.3) is:

$$\ell_{db} = \frac{0.24d_b f_y}{\sqrt{f_c'}} > 0.044 d_b f_y > 0.44d_b f_y \text{ (not less than 200 mm)}$$
$$\ell_{db} = \frac{0.24 \times 25.2 \times 400}{\sqrt{25}} = 484 \text{ mm} > 0.044 \times 25.2 \times 400 = 443 \text{ mm} \text{ (> 200 mm)}$$

Also, from Table 3.9 *l*_{db} = 480 mm

 ℓ_{db} should be multiplied by factors from A23.3 Cl. 12.3.3 which are 1.0.

Available length = 800 - 75 - 25.2 - 25.2 = 675 mm (: O.K).

- If the available length is less than ℓ_{db} :
 - 1. Reduce the bar size (smaller d_b).
 - 2. Increase footing thickness.
- The dowels must extend into the column the longer of a compression lap-splice length of a No. 25 bar in 30 MPa concrete (736 mm) or the compression development length of a No. 30 bar (526 mm) (A23.3 Cl. 12.16.2).

NOTE: In practice, normally the number of dowels used is the same as the column reinforcement (i.e. they match).

Concrete Spread Footing Design									
	Project	t: Gibraltar Off	ice Building			Project #: 1	13.001		
Des	igned by	r: SI, AH				Date: 1	16/03/202	13	
Che	ecked by	v: JG, AS				Description:]	F1	
Column Data:			1						
c ₁ =	200	mm	c ₂ =	200	mm	Column	Location	: Corner	
$LL_{C} =$	134	kN	$DL_{C} =$	118	kN	$\alpha_s =$	2		
$f_c =$	25	MPa							
	Deter								
Geotecnnical	1200		<u> </u>	10	1. 1. 1. 3	1			
	1200	10	γ _{soil} —	200	kN/m	-			
q _{sa} —	150	кРа	q_{su} –	300	кРа				
Basic Data:						Φ-	0.85		
Steel Sizer	1/	0 M	1 ₂ –	0.8		Φ -	0.65		
steel size.	11.2		к ₄ —	1		$\varphi_{c} = \varphi_{c}$	0.03	MD.	
	11.5	2 mm	λ -	1		1 _c –	25	MPa	
$A_b =$	100	mmī	$a_g =$	20	mm	$f_y =$	400	MPa	
Size Footing:						h –	300	mm	
b –	100			2.4	l-D-		2.4	linn lrDa	
II _s =	7.2	111111 1-D-	w _{slab} –	2.4	L-D-	w _{LL(SOG)} –	2.4	KPa I-D-	
w _{foot} =	1.2		w _{soil} –	14.4	KPa	w _{total} –	20.4	2 KPa	
q _{sa(net)} –	123.6	ĸPa	P _{service} –	252	КIN	$A_{\rm f}$ –	2.04	m	
b =	1.4	m2	b ₁ =	1200	mm	b ₂ =	1200	mm	
New $A_f \equiv$	1.44	m ²	$P_f \equiv$	348.5	kN	$q_{\rm sf}$ =	242.0	kPa	
Sheer Cheeler									
One Way She	0. * *				Using 1 m	strip \rightarrow b =	1		
	500		0.5	3.1 >8 -	. 0.21	$\frac{1}{1} \frac{1}{1} \frac{1}$	1	111	
$a_b =$	101.0	111111	$a_b \sim V_{-}$	$\int d_v \cdots p =$	- 0.21	X = 0	1.2420		
$v_{\rm f} =$	121.0	$- x d_v$	V _c -	0.6825	u _v	Solve $u_v =$	131	mm 1	
$3a_v =$	595	mm	β =	0.2033802		Vc =	0.6610	dv	
New $dv =$	134	mm	3dv =	402	mm	$d_v =$	134	mm	
$d_{1way} =$	149	mm							

Co	oncrete Spre	ead Fo	oting De	esign		
Project: Gibralta	ar Office Building			Project #:	13.001	
Designed by: SI, AH				Date:	16/03/201	3
Checked by: JG, AS				Description:	F	1
Two-Way Shear:				$\beta_c =$	1	
$V_{\rm f} = 338819 - 96.805$	$d - d^{2*}$	0.242	$V_c =$	988	$d - d^{2*}$	4.94
$0 = 5.182 * d^2$	+ d* 1084.8056	-338819		$d_{2way} =$	172	mm
$v_{r1} = 1.2350$	$v_{r2} =$	1.8525		v _{r3} =	1.3680	
$v_r = 1.2350$		OKAY!				
d = 172 mm	b' _c =	75	mm	h =	258	mm
h _f = 300 mm	d _{avg} =	214	mm	d _{Long} =	208	mm
$d_{Tran} = 219 \text{ mm}$						
Flexure Design:						
Flexure Design Longitudinal	Direction:		Using 1m	strip> $b_w =$	1	m
s _{max} = 500 mm	$M_{\rm f}$ =	30.25	kNm	k _r =	0.6989	
From Table 2.1: $\rho = 0.2$.1 %	$Q_{\rm bal} =$	2.24	%	OK	AY!
$A_{s,min} = 720 mm^2$	$A_s =$	524.286	mm ²	n =	7.2	Bars
$A_s = 800 \text{ mm}^2$	n =	8	Bars	s =	150	mm
Flexure Design Transverse Di	rection:		Using 1m	strip> $b_w =$	1	m
$s_{max} = 500 \text{ mm}$	$M_{\rm f}$ =	30.25	kNm	$k_r =$	0.6287	
From Table 2.1: $\rho = 0.19$	95 %	$\varrho_{\rm bal} =$	2.24	%	OK	AY!
$A_{s,min} = 526.44 \text{ mm}^2$	$A_s =$	513.279	mm ²	n =	5.2644	Bars
$A_s = 600 \text{ mm}^2$	n =	6	Bars	s =	200	mm
Check Developmental Length	•					
$l_{d} = 325 \text{mm}$	$ _{A} =$	500	mm		OKAY!	

		Conce	ete Spre	ead Fo	oting De	esigr	1		
	Project	: Gibraltar Offi	ce Building			Pro	oject #: 1	3.001	
Des	igned by:	: SI, AH					Date: 1	6/03/20)13
Che	ecked by:	: JG, AS				Desci	ription:		F1
Column-Footi	ing Joint	Design:							
A _c =	40000	mm^2	$A_{f} =$	1440000	mm^2		sqrt	(A_f/A_c)	= 2
B _{r.footing} =	1105.0	kN	$P_f =$	348.5	kN		(DKAY!	
-,									
B _{r column} =	552.5	kN	$P_f =$	348.5	kN		(DKAY!	
1,00141111			-						
n =	4	Bars	A _{s.dowels} =	400	mm^2		s =	100	mm
				``					
Check Develo	pmental	l Length:							
$ _{db} =$	217	mm	$0.044d_{b}f_{v} =$	198.88	mm			20	0 mm
	OKAY!			202	mm		Sec	e Below	
			Use	150	mm 90° Hoo	k!			
Final F1 Footi	ing Desi	gn:							
b ₁ =	1200	mm	b ₂ =	1200	mm		h _f =	300	mm
Longitudinal	Directio	n:							
	n =	8	10	M Bars	(a) s =	150	r	nm	
Transverse Di	irection:								
	n =	6	10	M Bars	@ s =	200	n	nm	
Column-Footi	ing Joint	:							
	n =	: 4	10	M Bars	@ s =	100	n	nm	
			Use	150	mm 90° Hoo	k!			

Concrete Spread Footing Design									
	Project	: Gibraltar Off	ce Building			Project #: 1	3.001		
Desi	igned by	: SI, AH				Date: 1	6/03/201	13	
Che	ecked by	: JG, AS				Description:	1	F2	
Column Data:			1						
c ₁ =	250	mm	c ₂ =	250	mm	Column	Location	: Corner	
$LL_{C} =$	240	kN	$DL_{C} =$	165	kN	$\alpha_s =$	2		
$f_{c} =$	25	MPa							
	Datas								
Donth =	1200	100.000	v –	10	1 3	1			
	1200	1.D.	Y soil —	200	kIN/m	-			
q _{sa} –	150	кРа	q_{su} –	300	кРа				
Basic Data:						Ф =	0.85		
Stool Sizo:	14	5 M	k =	0.8		$\Phi^{s} =$	0.65		
d =	1.	mm	х ₄	1		€ + + + + + + + + + + + + + + + + + + +	25	MDa	
d _b =	200	2	λ -	1		1 _c -	23	MPa	
A _b –	200	mm	a _g –	20	mm	r _y –	400	MPa	
Size Footing:						h _c =	375	mm	
bize i obtilig. h =	100	mm	w., =	24	k Da		24	kPa	
w _s =	0		w slab	13.1	l-Do	w_LL(SOG)	2.4	ki a	
	123.2	ki a	P =	405	ki a	$w_{total} =$	3 20	²	
Hard Hard Hard Hard Hard Hard Hard Hard	123.2	KI a	h =	1500	KIN mm	$h_{\rm f} =$	1500	m	
D =	2.25	2	D ₁ –	5(()5	IIIIII I-NI	$D_2 =$	251.7		
inew $\Lambda_{\rm f}$ –	2.23	m	r _f –	500.25	KIN	$q_{\rm sf}$ –	251.7	кРа	
Shear Check:									
One-Way She	ar:				Using 1 m	strip> b =	1	m	
$a_1 =$	625	mm	a. <	$3d_{-} ->\beta =$	0.21	$\mathbf{x} = 0$) 2517		
U_{b}	157.3	- vd	V =	0.6825	d	Solve $d =$	168	mm	
3d. =	505	mm	, _с В =	0.1968544	V	$V_{c} =$	0.6398	dv	
New $dv =$	176	mm	P $3dv =$	529	mm	$d_v =$	176	mm	
$d_{1way} =$	196	mm				v			
1 way	~ ~	-							

Conc	rete Spre	ead Fo	oting De	sign	
			<u> </u>	0	
Project: Gibraltar Off	ice Building			Project #:	13.001
Designed by: SI, AH				Date:	16/03/2013
Checked by: JG, AS				Description:	F2
Two-Way Shear:				$\beta_c =$	1
$V_{\rm f}$ = 550521 -125.833333	$d - d^{2*}$	0.252	$V_c =$	1235	$d - d^{2*} = 4.94$
$0 = 5.192 * d^2 + d^*$	1360.8333	-550521		$d_{2way} =$	220 mm
$v_{r1} = 1.2350$	$v_{r2} =$	1.8525		v _{r3} =	1.3781
$v_r = 1.2350$		OKAY!			
d = 220 mm	b' _c =	75	mm	h =	311 mm
h _f = 350 mm	d _{avg} =	259	mm	d _{Long} =	251 mm
d _{Tran} = 267 mm					
Flexure Design:					
Flexure Design Longitudinal Direc	tion:		Using 1m	strip> $b_w =$	1 m
$s_{max} = 500 \text{ mm}$	$M_{\rm f}$ =	49.15	kNm	k _r =	0.7802
From Table 2.1: $\rho = 0.23$	%	$Q_{\rm bal} =$	2.24	%	OKAY!
$A_{s,min} = 1050 \text{ mm}^2$	$A_s =$	865.95	mm ²	n =	5.25 Bars
$A_{\rm s} = 1200 \rm{mm}^2$	n =	6	Bars	s =	250 mm
Flexure Design Transverse Direction	on:		Using 1m	strip $\rightarrow b_w =$	1 m
$s_{max} = 500 \text{ mm}$	$M_{\rm f}$ =	49.15	kNm	$k_r =$	0.6895
From Table 2.1: $\rho = 0.21$	%	$Q_{\rm bal} =$	2.24	%	OKAY!
$A_{s,min} = 801 \text{ mm}^2$	$A_s =$	841.05	mm ²	n =	4.20525 Bars
$A_{\rm s} = 1000 \rm{mm}^2$	n =	5	Bars	s =	300 mm
Check Developmental Length:					
$l_d = 461 \text{ mm}$	$ _{A} =$	625	mm		OKAY!

		Conci	rete Spre	ead Fo	oting D	esigr	1		
	Project	: Gibraltar Offi	ce Building			Pro	ject #: 1	3.001	
Des	igned by:	: SI, AH					Date: 1	6/03/20	13
Che	ecked by:	: JG, AS				Desci	iption:		F2
Column-Foot	ing Joint	Design:							
A _c =	62500	mm ²	$A_{f} =$	2250000	mm^2		sqrt	(A_f/A_c) =	= 2
B _{r,footing} =	1726.6	kN	$P_f =$	566.25	kN		0	OKAY!	
B _{r,column} =	863.3	kN	$P_{f} =$	566.25	kN		C	DKAY!	
n =	4	Bars	A _{s,dowels} =	800	mm ²		s =	125	mm
				`		•			
Check Develo	pmental	l Length:							
$ _{db} =$	307	mm	$0.044d_{b}f_{y} =$	281.6	mm			281.	6 mm
	OKAY!		_A =	243	mm		See	e Below!	
			Use	220	mm 90° Hoo	ok!			
Final F2 Foot	ing Desi	gn:							
b ₁ =	1500	mm	b ₂ =	1500	mm		$h_f =$	350	mm
Longitudinal	Directio	n:							
	n =	6	15	M Bars	@ s =	250	n	nm	
Transverse Di	irection:								
	n =	5	15	M Bars	@ s =	300	n	nm	
Column-Foot	ing Joint	:							
	n =	: 4	15	M Bars	@ s =	125	n	nm	
			Use	220	mm 90° Hoo	ok!			

Concrete Spread Footing Design									
	Project	t: Gibraltar Off	ice Building		Project #: 13.001				
Des	igned by	r: SI, AH				Date: 1	16/03/20	13	
Checked by: JG, AS					Description:]	F 3		
Column Data:			Г						
c ₁ =	300	mm	c ₂ =	300	mm	Column	Location	: Edge	
$LL_{C} \equiv$	420	kN	$DL_{C} =$	247	kN	$\alpha_s =$	3		
$f_{c} =$	25	MPa							
Caataahniaal	Data								
Depth =	1200	mm	V ., =	18	kN/m^3				
	1200	kPa		300	kIN/III kDa	-			
	150	KI a	- q _{su}	500	KI a				
Basic Data:						$\Phi_s =$	0.85		
Steel Size:	2	0 M	k ₄ =	0.8		$\Phi_{\rm c} =$	0.65		
d _b =	19.5	mm	λ =	1		$f_c =$	25	MPa	
$A_b =$	300	mm^2	a _g =	20	mm	$f_y =$	400	MPa	
Size Footing:						$h_{\rm f}$ =	450	mm	
$h_s =$	100	mm	$w_{slab} =$	2.4	kPa	$w_{LL(SOG)} =$	2.4	kPa	
$w_{\rm foot}$ =	10.8	kPa	$w_{soil} =$	11.7	kPa	$w_{total} =$	27.3	kPa	
$q_{sa(net)} =$	122.7	kPa	P _{service} =	667	kN	$A_{f} =$	5.44	m ²	
b =	2.3	m	b ₁ =	2000	mm	b ₂ =	2000	mm	
New $A_f =$	4	m^2	$P_f =$	938.75	kN	$q_{sf} =$	234.7	kPa	
Shear Check:									
One-Way Shea	ar:				Using 1 m	strip> $b_w =$	1	m	
$a_b =$	850	mm	a _b <	$3d_v - \beta =$	0.21	$\mathbf{x} = 0$).2347		
$V_{f} =$	199.5	$- xd_v$	$V_c =$	0.6825	d_v	Solve $d_v =$	217	mm	
$3d_v =$	652	mm	β =	0.1889124		Vc =	0.6140	dv	
New dv =	235	mm	3dv =	705	mm	$d_v =$	235	mm	
$d_{1way} =$	261	mm							

Concrete Spread Footing Design							
Project: Gibraltar Off	ice Building		Project #: 13.001				
Designed by: SI, AH				Date:	16/03/2013		
Checked by: JG, AS				Description:	F3		
Two-Way Shear:				$\beta_{\rm c} =$	1		
$V_{f} = 917628 -140.8125$	$d - d^{2*}$	0.235	$V_c =$	1482	$d - d^{2*} = 4.94$		
$0 = 5.175 * d^2 + d^*$	1622.8125	-917628		$d_{2way} =$	293 mm		
$v_{r1} = 1.2350$	v _{r2} =	1.8525		v _{r3} =	1.8209		
$v_r = 1.2350$		OKAY!					
d = 293 mm	b' _c =	75	mm	h =	387 mm		
h _f = 400 mm	d _{avg} =	306	mm	d _{Long} =	296 mm		
d _{Tran} = 315 mm							
Flexure Design:							
Flexure Design Longitudinal Direc	tion:		Using 1m	strip> $b_w =$	1 m		
$s_{max} = 500 \text{ mm}$	$M_{\rm f}$ =	84.78	kNm	k _r =	0.9693		
From Table 2.1: $\rho = 0.3$	%	$Q_{\rm bal} =$	2.24	%	OKAY!		
$A_{s,min} = 1600 \text{ mm}^2$	$A_s =$	1774.5	mm ²	n =	5.915 Bars		
$A_{\rm s} = 1800 \rm{mm}^2$	n =	6	Bars	s =	333 mm		
			_				
Flexure Design Transverse Direction	on:		Using 1m	strip> $b_w =$	1 m		
$s_{max} = 500 \text{ mm}$	$M_{\rm f}$ =	84.78	kNm	k _r =	0.8531		
From Table 2.1: $\rho = 0.255$	%	$\varrho_{\rm bal} =$	2.24	%	OKAY!		
$A_{s,min} = 1261 \text{ mm}^2$	$A_s =$	1607.775	mm ²	n =	5.35925 Bars		
$A_{\rm s} = 1800 \rm{mm}^2$	n =	6	Bars	s =	333 mm		
				• • • • • • • • • • • • • • • • • • •			
Check Developmental Length:							
$ _{\rm d} = 562 {\rm mm}$	$ _{A} =$	850	mm		OKAY!		
	•						

Concrete Spread Footing Design									
	Project	: Gibraltar Offi	ce Building		Project #: 13.001				
Des	igned by:	: SI, AH				Date: 16/03/2013			
Che	ecked by:	: JG, AS				Descrip	ption:	F3	
Column-Footi	ing Joint	Design:							
A _c =	$A_{c} = 90000 \text{ mm}^{2}$ $A_{f} = 4000000$			4000000	mm^2		sqrt(A _f /A _c)	= 2	
B _{r,footing} =	2486.3	kN	$P_f =$	938.75	kN		OKAY!		
B _{r,column} =	1243.1	kN	$P_{f} =$	938.75	kN		OKAY!		
n =	4	Bars	$A_{s,dowels} =$	1200	mm^2		s = 150	mm	
				``					
Check Develo	pmental	Length:							
$ _{db} =$	374	mm	$0.044d_{b}f_{y} =$	343.2	mm		343	3.2 mm	
	OKAY!			286	mm		See Below	v!	
			Use	260	mm 90° Hoo	k!			
Final F3 Foot	ing Desi	gn:							
b ₁ =	2000	mm	b ₂ =	2000	mm		h _f = 400	mm	
Longitudinal	Directio	n:							
	n =	6	20	M Bars	@ s =	333	mm		
Transverse Di	irection:								
	n =	6	20	M Bars	@ s =	333	mm		
Column-Footi	ing Joint	:							
	n =	4	20	M Bars	@ s =	150	mm		
			Use	260	mm 90° Hoo	k!			

Concrete Spread Footing Design									
	Project	t: Gibraltar Off	ice Building		Project #: 13.001				
Des	igned by	r: SI, AH				Date: 1	16/03/201	3	
Che	ecked by	v: JG, AS				Description:	I	74	
Column Data:									
c ₁ =	350	mm	c ₂ =	350	mm	Column	Location	Interior	
$LL_C =$	509	kN	$DL_C =$	392	kN	$\alpha_{s} =$	4		
$f_c =$	25	MPa							
Geotechnical	Data:								
Depth =	1200	mm	$\gamma_{soil} =$	18	kN/m^3				
$q_{sa} =$	150	kPa	$q_{en} =$	300	kPa	1			
154		#	Isu		•				
Basic Data:						$\Phi_s =$	0.85		
Steel Size:	2	5 M	k ₄ =	1		$\Phi_{\rm c} =$	0.65		
d _b =	25.2	mm	$\lambda =$	1		$f_{c} =$	25	MPa	
$A_b =$	500	mm ²	a _g =	20	mm	$f_y =$	400	MPa	
						•			
Size Footing:						$h_{\rm f}$ =	525	mm	
$h_s =$	100	mm	w _{slab} =	2.4	kPa	$w_{LL(SOG)} =$	2.4	kPa	
$W_{\rm foot} =$	12.6	kPa	$w_{soil} =$	10.4	kPa	$w_{total} =$	27.8	kPa	
$q_{sa(net)} =$	122.3	kPa	P _{service} =	901	kN	$A_f =$	7.37	m^2	
b =	2.7	m	b ₁ =	2200	mm	b ₂ =	2200	mm	
New $A_f =$	4.84	m^2	$P_f =$	1253.5	kN	$q_{sf} =$	259.0	kPa	
Shear Check:					-				
One-Way She	ar:				Using 1 m	$a \text{ strip }> b_w =$	1	m	
$a_b =$	925	mm	a _b <	$3d_v -> \beta =$	0.21	$\mathbf{x} = 0$).2590		
$V_{f} =$	239.6	$- xd_v$	$V_c =$	0.6825	d _v	Solve $d_v =$	254	mm	
$3d_v =$	763	mm	β =	0.183347		Vc =	0.5959	dv	
New dv =	280	mm	3dv =	841	mm	$d_v =$	280	mm	
$d_{1way} =$	311	mm				-			
			•						

Concrete Spread Footing Design								
			•••					
Project: Gibraltar C	Office Building			Project #:	13.001			
Designed by: SI, AH				Date:	16/03/2013			
Checked by: JG, AS				Description:	F4			
Two-Way Shear:			-	$\beta_c =$	1			
$V_{\rm f} = 1221774 - 181.29132$	$d - d^{2*}$	0.259	V _c =	1729	$d - d^{2*} = 4.94$			
$0 = 5.199 * d^2 + d^2$	<u>d*</u> 1910.2913	-1221774		$d_{2way} =$	335 mm			
$v_{r1} = 1.2350$	v _{r2} =	1.8525		v _{r3} =	2.2062			
$v_r = 1.2350$		OKAY!						
d = 335 mm	b' _c =	75	mm	h =	435 mm			
h _f = 450 mm	$d_{avg} =$	350	mm	d _{Long} =	337 mm			
$d_{Tran} = 362 \text{ mm}$								
Flexure Design:			1					
Flexure Design Longitudinal Dir	ection:		Using 1m	strip $-> b_w =$	1 m			
$s_{max} = 500 \text{ mm}$	$M_{\rm f}$ =	110.80	kNm	$k_r =$	0.9744			
From Table 2.1: $\rho = 0.28$	%	$Q_{\rm bal} =$	2.24	%	OKAY!			
$A_{s,min} = 1980 \text{ mm}^2$	$A_s =$	2077.152	mm^2	n =	4.154304 Bars			
$A_s = 2500 \text{ mm}^2$	n =	5	Bars	s =	440 mm			
			1					
Flexure Design Transverse Direc	tion:		Using 1m	strip $-> b_w =$	1 m			
$s_{max} = 500 \text{ mm}$	${ m M_f}$ =	110.80	kNm	$k_r =$	0.8436			
From Table 2.1: $\rho = 0.255$	%	$Q_{\rm bal} =$	2.24	%	OKAY!			
$A_{s,min} = 1594.56 \text{ mm}^2$	$A_s =$	2033.064	mm ²	n =	4.066128 Bars			
$A_s = 2500 \text{ mm}^2$	n =	5	Bars	s =	440 mm			
Check Developmental Length:								
$l_{\rm d} = 907 {\rm mm}$	$ _{A} =$	925	mm		OKAY!			

	Concrete Spread Footing Design									
	Project	: Gibralt	ar Offi	ce Building		Project #: 13.001				
Des	signed by:	SI, AH	-					Date: 1	6/03/20	13
Ch	ecked by:	: JG, AS					Descr	iption:		F4
Column-Foot	ing Joint	Desigr	ı:							
$A_{c} = 122500 \text{ mm}^{2}$				$A_f =$	4840000	mm^2		sqrt((A_f/A_c) =	= 2
B _{r,footing} =	3384.1	kN		$P_f =$	1253.5	kN		C	KAY!	
-										
B _{r,column} =	1692.0	kN		$P_f =$	1253.5	kN		C)KAY!	
n =	4	Bars		$A_{s,dowels} =$	2000	mm^2		s =	175	mm
					×					
Check Develo	opmental	l Lengtl	1:							
$I_{db} =$	484	mm		$0.044d_{b}f_{y} =$	443.52	mm			443.5	2 mm
	OKAY!			$ _{A} =$	325	mm		See	Below!	
				Use	340	mm 90° Ho	ook!			
Final F4 Foot	ing Desi	gn:								
b ₁ =	2200	mm		b ₂ =	2200	mm		$h_f =$	450	mm
Longitudinal	Directio	n:								
	n =	. 5	;	25	M Bars	@ s =	440	n	ım	
Transverse D	irection:									
	n =	5	;	25	M Bars	@ s =	440	n	ım	
Column-Foot	ing Joint	:								
	n =	- 4	<u> </u>	25	M Bars	<u>(a)</u> s =	175	n	ım	
				Use	340	mm 90° Ho	ook!			

B.7: Foundation Wall

Example 2.3 – Design of a Cantilever Retaining Wall

Design a cantilever retaining wall to support a bank of earth 4.9 m high. The top of the earth is to be level with a surcharge of 16.0 kPa. The weight of the backfill is 18.0 kN/m³, the angle of internal friction is $\phi = 35^{\circ}$, the coefficient of friction between concrete and soil is 0.5, the coefficient of friction between soil layers is 0.7, allowable soil bearing capacity is 200 kPa. Use: normal weight concrete, $f'_c = 30$ MPa, $a_a = 20$ mm, and $f_v = 400$ MPa.

(I) INITIAL DIMENSIONS

The retained height is 4.9 m. We assume a frost penetration depth of 1200 mm (4 ft). Hence, the total height of the wall is 6.10 m. The selected initial dimensions for the <u>trial</u> section of the wall are:

	Range		Dimensio	Select	
Тор	8 -	12 in	200	300	300
Batter	1/2 in/ft	42 mm/m		256	
x = h /	12	10	508	610	500
Toe = <i>h</i> /	8	6	763	1017	950
Base width = h ×	2/3	2/5	4067	2440	3100
Heel					1650

Figure 1. Forces acting on retaining wall.

(II) STABILITY OF THE WALL

1. Overturning

Using the Rankine equation:

$$C_a = \frac{1 - \sin\phi}{1 + \sin\phi} = \frac{1 - 0.574}{1 + 0.574} = 0.271$$

Overturning forces:

 h_s (due to surcharge) = $\frac{W_s}{W} = \frac{16}{18} = 0.89$ m

 $p_s = C_a w_b h_s = 0.271 \times (18 \times 0.89) = 4.34 \text{ kN/m}$ $p_a = C_a w_b h = 0.271 \times (18 \times 5.5) = 29.75 \text{ kN/m}$

 $H_{a1} = 4.34 \times 6.1 = 26.4$ kN/m, arm (from point "O") $= \frac{6.1}{2} = 3.050$ m $H_{a2} = \frac{1}{2} \times 29.75 \times 6.1 = 90.8$ kN/m arm (from point "O") $= \frac{6.1}{3} = 2.033$ m

The overturning moment = $26.4 \times 3.050 + 90.8 \times 2.033 = 265.2$ kN.m

Calculate the balancing moment against overturning:

Weight (kN)	Arm @ "O" (m)	Moment (kNm)
$w_1 = 0.3(5.5)(24) = 39.6$	1.3	51.5
$w_2 = \frac{1}{2} (0.2)(5.5)(24) = 13.2$	1.083	14.3
$w_3 = 0.6(3.1)(24) = 44.6$	1.55	69.2
$w_4 = 1.65(5.5)(18) = 163.4$	2.275	371.6
$w_{\rm s}$ = 1.65(0.89)(18) = 26.4	2.275	60.1
$\Sigma w = R = 287.2$		$M_{\rm bal} = \Sigma M = 566.7$

Safety against overturning

Safety against overturning = $\frac{\text{Balancing Moments}}{\text{Overturning Moments}} = \frac{566.7}{287.2} = 2.14 \ge 2.0 \therefore \text{O.K.}$

2. Base Soil Pressure

a. First, we locate the location of the resultant R of the vertical forces. We took the moments about the toe end "O" when we were determining the overturning of the wall. Therefore, the distance "x" from the point "O" is determined as follows:

$$(R_{Vertical})(x) = M_{Balancing} - M_{Overturning}$$

 $x = (566.7 - 287.2) / 287.2 = 1.05 m$
 $e = L/2 - x = 3.1 / 2 - 1.05 = 0.50 m$

b. We calculate the stresses under the footing (per meter width):

$$q_{sa} = \frac{R_{v}}{A} \pm \frac{(R_{v} e)c}{I} = R_{v}\left(1 + \frac{6e}{L}\right)$$
$$= \frac{310.4}{1 \times 3.1} \pm \frac{287.2 \times (3.1/2)}{1.0 \times \frac{(3.1)^{3}}{12}}$$
$$q_{1} = 92.6 + 89.7 = 182.4 \text{ kPa}$$
$$q_{2} = 92.6 - 89.7 = 2.9 \text{ kPa}$$

- **c.** The non-factored (working) bearing pressure under the soil is less than the allowable value of 200 kPa, ∴ O.K.
- **d.** Also, note that there will be no tension under the footing at the end of the heel. This conclusion can also be reached using the rule of the middle third since e < L/6. Note that in the design process it is recommended that e < 0.3L in order to limit local bearing stresses in either the concrete footing or the soil or rock so as to avoid the possibility of a bearing failure towards the rear of the footing or overturning.

3. <u>Sliding</u>

- **a.** Force causing sliding = $H_{a1} + H_a = 26.4 + 90.8 = 117.2$ kN
- **b.** The coefficient of friction between the concrete base and soil ($\mu_{\text{Concrete-Soil}}$) = 0.5.

Resisting force = $\mu_{\text{Concrete-Soil}} \times R = 0.50 \times 287.2 = 143.6 \text{ kN}$

- **c.** Safety against sliding = 143.6 / 117.2 = 1.23 < 1.5, therefore **NOT O.K.**
- **d.** The resistance provided does not give an adequate safety against sliding. In this case, a key should be provided to develop a passive pressure large enough to resist the excess force that causes sliding. Another function of the key is to provide sufficient development length for the dowels of the stem. The key is therefore placed such that its face is about 150–300 mm from the back face of the stem (Figure 2). In the calculation of the passive pressure, the top 300 mm of the earth at the toe side is usually neglected, leaving a height of 300 mm in this example. Assume a key depth t = 0.60 m and a width b = 0.50 m.

$$C_{p} = \frac{1 + \sin \phi}{1 - \sin \phi} = \frac{1 + 0.574}{1 - 0.574} = 3.69$$
$$H_{p} = \frac{1}{2}C_{p}w(h' + t)^{2}$$
$$= \frac{1}{2} \times 3.69 \times 18(0.6 + 0.9)^{2}$$
$$= 74.7 \text{ kN}$$

e. The sliding may occur now on the surfaces *AC*, *CD*, and *EF* (Figure 2). The sliding surface *AC* lies within the soil layers with a coefficient of internal friction = tan ϕ = tan 35° = 0.7, whereas the surfaces *CD* and *EF* are those between concrete and soil, where μ _{Concrete-Soil} = 0.50. The frictional resistance (*F*) is:

$$F = \mu_{\text{Soil-Soil}} R_1 + \mu_{\text{Concrete-Soil}} R_2$$

$$H_{p}$$

$$H_{h$$

$$R_1$$
 = reaction on $AC = \left(\frac{182.4 + 107.1}{2}\right) \times 1.15 = 188.2 \text{ kN}$

$$R_2 = R - R_1 = 287.2 - 188.2 = 99.0$$
 kN

$$R_2$$
 = reaction on *CDF* = $\left(\frac{107.1+2.9}{2}\right) \times 1.95 = 99.0$ kN

The total resisting force = $F + H_p$ = 181.3 + 74.7 = 256.0 kN

The factor of safety against sliding is:

$$\frac{256.0}{117.2} = 2.18 > 2.0 \qquad \qquad \text{or} \quad \frac{181.3}{117.2} = 1.55 > 1.5$$

The factor is greater than 1.5, which is recommended when passive resistance against sliding is not included.

(III) DESIGN OF THE WALL

- The load factors (α) used in calculating M_f and V_f are:
 - For lateral earth pressure, $\alpha = 1.5$
 - For dead loads such as soil weight and concrete weight (acting), $\alpha = 1.25$
 - For dead loads such as soil weight and concrete weight (resisting), $\alpha = 0.9$
 - For live loads, $\alpha = 1.5$

1. Stem Design

Estimate effective depth *d* assuming 25M bars:

d = 500 - 75 - 25.2/2 = 412.4 mm

 $d_v = Max (0.9d \text{ or } 0.72h) = 371 \text{ mm}$

Design for Flexure

The critical section for bending moment is at the face of the bottom of the stem.

 $p_{1} = (C_{a} \ w \ h_{s}) = 0.271 \times 18 \times 0.89 = 4.34 \ \text{kPa}$ $p_{2} = (C_{a} \ w \ h_{\text{stem}}) = 0.271 \times 18 \times 5.5 = 26.83 \ \text{kPa}$ $H_{a1} = 4.34 \times 5.5 = 23.88 \ \text{kN} \qquad @ \text{arm} = 5.5/2 = 2.75 \ \text{m}$ $H_{a2} = \frac{1}{2} \times 26.83 \times 5.5 = 73.78 \ \text{kN} \qquad @ \text{arm} = 5.5/3 = 1.833 \ \text{m}$ $M_{f} \text{ (at bottom of wall)} = 1.5 \times 23.88 \times 2.75 + 73.78 \times 1.833 = 301.4 \ \text{kN.m}$

ENGI 6707 (F11)

• Determine the required main tension vertical reinforcement:

- We design a 1.0 m strip of the stem as a cantilever one-way slab system spanning in the vertical direction.
- − Since the section is an R–Section, we use Table 2.1 where $M_r = k_r b d^2 \times 10^{-6}$. The factored moment $M_f = 301.4$ kN.m. Setting $M_r \ge M_f$, we obtain:

$$K_r = 301.4 \times 10^6 / [(1000) \times (412.4)^2] = 1.93 \text{ MPa} \Rightarrow \rho = 0.61\%$$

 $A_s = 0.61\% \times 1000 \times 412.4 = 2286 \text{ mm}^2$

- Since $\rho_{\text{max}} = 2.63\%$, $\rho < \rho_{\text{max}} \therefore \mathbf{OK}$. We also notice that $\rho / \rho_{\text{max}} = 0.23$
- $A_{s,min} = 0.002 A_g$ [Cl. 7.8.1] = 0.002 × 1000 × 450 = 900 mm² $\overline{A_s > A_{s,min} \therefore OK}$].
- Use 4–25 M bars per meter, $A_{s, \text{ provided}} = 2500 \text{ mm}^2$, and s = 200 mm.
- The maximum bar spacing for the main reinforcement in slabs, s_{max}, is the smallest of 3*h* or 500 mm [Cl. 7.4.1.2]:

 $s_{max} < (3 \times 500 \text{ or } 500 \text{ mm}) \Rightarrow s_{max} = 500 \text{ mm}.$ s < s_{max} , therefore **OK**.

• Determine the secondary reinforcement for temperature & shrinkage in the horizontal direction:

- $A_{s,TEMP} = 0.002 A_g$. The maximum bar spacing for the **secondary** reinforcement in slabs is the smallest of 5*h* or 500 mm [Cl. 7.8.3].
- $A_{s,\text{TEMP}} = 0.002 \times 1000 \times 500 = 1000 \text{ mm}^2$. However, we note that the thickness of the stem varies between 300 and 500 mm. Therefore, we can use an average thickness of $0.5 \times (300 + 500) = 400$ mm and in that case $A_{s,\text{TEMP}} = 0.002 \times 1000 \times 400 = 800 \text{ mm}^2$.

We use 10M horizontal bars at each face of the wall with a spacing of 250 mm ($A_s = 400 \text{ mm}^2$) per face.

However, note that because the front face of the wall is mostly exposed to temperature changes than the rear face which is covered by soil, some designers prefer to use one-half to two-thirds of the horizontal bars at the external faces of the wall.

- Provide 10M or 15M vertical bars (s = 500 mm) at the exposed vertical face of the wall, which serves as bars supports for the horizontal temperature reinforcement.

Design for Shear

• Critical section for shear is at a distance d_v from the bottom of the stem:

$$h_{\text{stem}} - d_v = 5.5 - 0.371 = 5.129 \text{ m}$$

$$p_1 = C_a w h_s = 0.271 \times 18 \times 0.89 = 4.34 \text{ kPa}$$

$$p_2 = C_a w (h_{\text{stem}} - d_v) = 0.271 \times 18 \times 5.129 = 25.02 \text{ kPa}$$

$$H_{a1} = 4.34 \times 5.129 = 22.27 \text{ kN}$$

$$H_{a2} = \frac{1}{2} \times 25.02 \times 5.129 = 64.16 \text{ kN}$$

 V_f (at a distance d_v from bottom of wall) = $1.5 \times 22.27 + 1.5 \times 64.16 = 129.64$ kN

• Shear resistance if shear reinforcement is not present:

$$\beta = \frac{230}{1000 + d_v} = \frac{230}{1000 + 371.2} = 0.168$$
$$V_c = \phi_c \lambda \beta \sqrt{f'_c} b_w d_v$$
$$= 0.65 \times 1 \times 0.158 \times \sqrt{25 \text{MPa}} \times 1000 \text{ mm} \times 371.8 \times 10^{-3} = 221.7 \text{ kN} > V_f \therefore \text{OK}.$$

- Other reinforcement details:
 - The vertical main reinforcing bars in the stem should be embedded into the footing a distance that is at least equal to the development length (*l_d*). This could be achieved using one of the two following arrangements:
 - (a) ℓ_d is that of a 180° hooked bar (Cl. 12.5). The basic development length is:

$$\ell_{hb} = \frac{100 \ d_b}{\sqrt{f_c'}} > 8d_b \text{ or } 150 \text{ mm} (f_y = 400 \text{ MPa})$$

(b) the reinforcement is extended in the shear key and ℓ_d is that of a straight bar only (Cl. 12.2), the basic development length in this case is:

- The splice at the bottom of the stem is a Class B lap splice (Cl. 12.15), that is the splice length is 1.3 ℓ_d .
2. Design of Heel

- The heel slab acts as a cantilever, projecting in this case from the back face of the stem and loaded by surcharge, earth fill, and its own weight.
- The upward reaction of the soil should be neglected in calculating the loads that act on the heel. This is done recognizing that for severe overloading stage a nonlinear pressure distribution will be obtained, with most of the reaction concentrated near the toe, which could lead to the *elimination* of most of the pressure under the heel.
- Calculate the factored bending moment at the critical section. The critical section for the bending moments is at the face of the heel.

$$M_{f} = 1.25(1.65 \times 0.6 \times 24) \left(\frac{1.65}{2}\right) + 1.25(1.65 \times 5.5 \times 18) \left(\frac{1.65}{2}\right) + 1.5(16 \times 1.65) \left(\frac{1.65}{2}\right) = 24.5 + 168.5 + 32.7 = 225.6 \text{ kN.m}$$

 The critical section for shear is also at the face of the heel (Fig N11.3.2). This is because there is a tension induced in the concrete where the heel joins the stem and the inclined cracks could extend into the region ahead of the back face of the stem.

 $V_f = 1.25(1.65 \times 0.6 \times 24) + 1.25(1.65 \times 5.5 \times 18) + 1.5(16 \times 1.65)$ = 29.7 + 204.2 + 39.6 = 273.5 kN

• Check the shear capacity of the heel:

- Estimate effective depth *d* assuming 25M bars:

d = 600 – 75 – 25.2/2 = 512.4 mm

- $d_v = Max (0.9d \text{ or } 0.72h) = 461.2 \text{ mm}$
- Shear resistance if shear reinforcement is not present:

 $a_b/d_v = 1.65/0.461 = 3.58 > 3.0$ (Note that if $a_b \le 3d_v$, then $\beta = 0.210$)

$$\beta = \frac{230}{1000 + d_v} = 0.157$$

$$V_c = \phi_c \lambda \beta \sqrt{f'_c} b_w d_v$$

$$= 0.65 \times 1 \times 0.173 \times \sqrt{25} \text{MPa} \times 1000 \text{ mm} \times 461.2 = 258.4 \text{ kN}.$$

 $V_c < V_f$, therefore, **NOT OK**.

- Increase the thickness of the heel. (Note that increasing the depth of the heel to 650 mm will result V_c = 2760 kN).

• Determine the required main tension reinforcement in the heel:

- We design a 1.0 m strip of the heel stem as a cantilever one-way slab system.
- Estimate effective depth *d* assuming 25M bars:

d = 650 – 75 – 25.2/2 = 562.4 mm.

− Since the section is an R–Section, we use Table 2.1 where $M_r = k_r b d^2 \times 10^{-6}$. The factored moment $M_f = 339$ kN.m. Setting $M_r \ge M_f$, we obtain:

 $K_r = 225.6 \times 10^6 / [(1000) \times (562.4)^2] = 0.71 \text{ MPa} \Rightarrow \rho = 0.21\%$

 $A_s = 0.21\% \times 1000 \times 562.4 = 1208 \text{ mm}^2$.

- Since $\rho_{\text{max}} = 2.63\%$, $\rho < \rho_{\text{max}}$. We also notice that $\rho / \rho_{\text{max}} = 0.08$.
- $A_{s,min} = 0.002 A_q$ [Cl. 7.8.1] = 0.002 × 1000 × 650 = 1300 mm².
 - $A_s < A_{s,min}$, therefore $A_{s,min}$ GOVERNS.
- Select 3–25M per meter, spacing = 333.3 mm.
- The maximum bar spacing for the main reinforcement in slabs, s_{max}, is the smallest of 3h or 500 mm [Cl. 7.4.1.2]:

 $s_{max} < (3 \times 850 \text{ or } 500 \text{ mm}) \Rightarrow s_{max} = 500 \text{ mm}.$ $s < s_{max}$, therefore **OK**.

• Other reinforcement details:

- Extend the reinforcement a distance equal to the development length, ℓ_d , past the inner face of the stem ($k_1 = 1.3$ when calculating ℓ_d).

- Determine the secondary reinforcement for temperature & shrinkage in the horizontal direction:
 - In general, temperature and shrinkage exposure is ordinarily less severe for footings than for slabs.
 - The base slab is well below grade and will not be subjected to the extremes of temperature that will be imposed on the stem concrete. Consequently, crack control (temperature and shrinkage steel) is not a major consideration. We provide No. 15M
 @ 500 mm oc at one face only. These bars also serve as bar supports and spacers to hold the main steel in place during construction.

3. Design of Toe

- The toe slab acts as a cantilever, projecting outward from the face of the stem. It must resist the upward pressures underneath it and the downward load of the toes slab itself. The downward load of the earth fill over the toe is neglected because it could be subject to possible erosion or removal.
- It should be noted that the stress distribution under the toe is based on working stresses. Hence, to obtain the factored bending moment and shear force, load factors must be applied.

$$V_{f} = \underbrace{1.5}_{\alpha_{LL}} \times \left(\frac{182.4 + 156.7}{2}\right) \times (0.95 - 0.506) - \underbrace{0.9}_{\alpha_{DL}} \times (0.95 - 0.506) \times 0.65 \times 24$$

= 112.9 - 6.23 = 106.7 kN
$$M_{f} = \underbrace{1.5}_{\alpha_{LL}} \times \left(\frac{1}{2}(182.4)(0.95)^{2}\left(\frac{2}{3}\right) + \frac{1}{2}(127.4)(0.95)^{2}\left(\frac{1}{3}\right)\right)$$
$$-\underbrace{0.9}_{\alpha_{DL}} \times \left(0.95 \times 0.65 \times 24(0.65)^{2}\left(\frac{1}{2}\right)\right) = 111 - 2.8 = 108.2 \text{ kN.m}$$

- From the heel design, we can conclude that *As*_{,min} will govern the design and hence the reinforcement will be identical to that of the heel. Also, the shear resistance of the toe is more than sufficient.
- Extend the reinforcement a distance equal to the development length, ℓ_d , past the outer face of the stem.

		Concre	ete Foun	datio	n Wall I	Design		
	Droiog	ti Cibraltan Off	Fine Building			Droiget #1	3 001	
De	Fillet	r: AS	lice Building			Date: 1	$\frac{5.001}{6/03/20^{2}}$	13
	hecked by	v. IG				Description:	GL	F 4 to 8
	ficence by	, jo				Description.	<u>UL</u>	1,100
Geotechnical D	ata:							
Depth =	1200	mm	$\gamma_{\rm soil} =$	18	kN/m^3	Φ=	35	0
q _{sa} =	150	kPa	$\mu_{c-s} =$	0.5		$\mu_{s-s} =$	0.7	
Basic Data:						k. =	1	
Stool Sizo:	2	5 M	Tomo Stl	1	5 M	f =	30	MDo
	25.2	5 M		1(5 M	f	30	MPa MD-
<u>u_b –</u>	25.2	2	<u>ub</u> –	10 200	2	1 _y –	400	MPa
$\Lambda_b =$	500	mm	$\Lambda_{\rm b}$ –	200	mm	a _g –	20	mm
$\Psi_{s} =$	0.85		$\Psi_{\rm c}$ –	0.65			1	1.D
$D_c =$	/5	mm	$\gamma_c =$	24	kN/m°	W _{surcharge} =	0	kPa
Initial Dimensi	ons:							
h _{gd} =	2460	mm	$h_{total} =$	3660	mm	b _{t-stem} =	190	mm
b _{base} =	1800	mm	h _{base} =	350	mm	b _{b-stem} =	190	mm
b _{toe} =	650	mm	b _{heel} =	960	mm	h _{stem} =	3310	mm
Stability of the '	Wall:							
Stability of the	Wall - O	verturning:						
$C_{\rm A} =$	0.271		C _P =	3.690		$h_s =$	0	mm
H _{a1} =	0.00	kN/m	H _{a2} =	32.67	kN/m	M _o =	39.9	kNm
w _{stem1} =	15.09	kN	w _{stem2} =	0.00	kN	w _{base} =	15.12	kN
$w_{soil} =$	57.20	kN	$w_s =$	0.00	kN	$F_{o} =$	87.4	kN
$M_{stem1} =$	11.24	kNm	$M_{stem2} =$	0.00	kNm	$M_{base} =$	13.61	kNm
$M_{soil} =$	75.50	kNm	$M_s =$	0.00	kNm	$M_{bal} =$	100.4	kNm
FoS =	2.52	> 2 OK						
0.111.01	W7 11 P	0 11 7						
Stability of the	wall - Ba	ase Soil Pressu	1 / 21 -	0.4000			N. T	- i
X =	0.69	m	$1/3D_{base} =$	0.6000	m		1NO Ten	
e =	0.2	m	$0.3b_{base} =$	0.540	m	UK, LOCA	Limited	g stresses
q ₁ =	82.22	kPa	q ₂ =	14.90	kPa	C	$ _{sa} > q_1 -$	→ OK

	Concrete Foundation Wall Design							
	. D. 11.		1	D :	2 001			
Project: Gibraltar Off	ice Building			Project #: 1	3.001	1.0		
Designed by: AS				Date: 1	6/03/20	13		
Checked by: JG				Description:	GL	F, 4 to 8		
Stem Design:								
Stem Design - Vertical Reinforcement	•			s _{max} =	500	mm		
Using 1 m Strip: $b_w = 1$	m			$A_{s,min} =$	380	mm ²		
d = 102 mm	$d_v =$	137	mm	H _{a1} =	0.00	kN		
$H_{a2} = 26.72 \text{ kN}$	$M_{\rm f}$ =	44.2	kNm	$k_r =$	4.22			
From Table 2.1: $\rho = 0.61$	%	$Q_{\rm bal} =$	2.24	%	C	OKAY!		
$A_{s} = 624.64 \text{ mm}^{2}$	n =	1.24928	Bars	s =	500	mm		
$A_s = 1000 \text{ mm}^2$	n =	2	Bars	s =	500	mm		
Stem Design - Horizontal Reinforcem	ent:			1				
$A_{s,temp} = 380 \text{ mm}^2$	n =	1.9	Bars	s =	1000	mm		
$A_s = 200 \text{ mm}^2/\text{Face}$	n =	1	Bars/Face	s =	500	mm/Face		
Stem Design - Shear Check:	I							
$\beta = 0.202$	p ₁ =	0.00	kPA	p ₂ =	15.48	kPA		
$H_{1} = 0.00 \text{ kN}$	Н.=	24 56						
	1 1 _{a2}	24.30	kN	$V_{f} =$	36.8	kN		
$V_{c} = 98.5 \text{ kN}$	V_{a2}	• Vf> O	kN KAY	$V_{f} =$	36.8	kN		
$V_{c} = 98.5 \text{ kN}$	$\mathbf{V_{c}}$	• Vf> 0	kN KAY	V _f =	36.8	kN		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length	Vc >	• Vf> 0	kN KAY Sp	$V_{\rm f}$ =	36.8 1077	kN mm		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length $ _{hb} = 460 \text{ mm}$	$\frac{V_{a2}}{Vc}$ Check: $8d_b =$	201.6	kN KAY Sp mm	V _f = lice Length = lhb >	36.8 1077 8db>	kN mm OKAY		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length $ _{hb} = 460 \text{ mm}$	$\frac{V_{a2}}{Vc}$ Check: $8d_b =$	24.30 Vf> O 201.6	kN KAY Sp mm	V _f = lice Length = lhb >	36.8 1077 8db>	kN mm OKAY		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length $ _{hb} = 460 \text{ mm}$ Final Foundation Wall Design:	$\frac{V_{a2}}{V_{c}}$ Check: $8d_{b} =$	24.30 • Vf> O 201.6	kN KAY Sp mm	V _f = lice Length = lhb >	36.8 1077 8db>	kN mm OKAY		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length $ _{hb} = 460 \text{ mm}$ Final Foundation Wall Design: $b_{b-stem} = 190 \text{ mm}$	$\frac{V_{a2}}{V_{c}}$ Check: $8d_{b} =$ $b_{t-stem} =$	24.30 • Vf> O 201.6 190	kN KAY Sp mm	V _f = lice Length = lhb > h _{stem} =	36.8 1077 8db> 3310	kN mm OKAY mm		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length $ _{hb} = 460 \text{ mm}$ Final Foundation Wall Design: $b_{b-stem} = 190 \text{ mm}$ Stem - Front Face - Longitudinal Dire	$b_{t-stem} = $	24.30 • Vf> O 201.6 190	kN KAY mm mm	V _f = lice Length = lhb > h _{stem} =	36.8 1077 8db> 3310	kN mm OKAY mm		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length $ _{hb} = 460 \text{ mm}$ Final Foundation Wall Design: $b_{b-stem} = 190 \text{ mm}$ Stem - Front Face - Longitudinal Dire $n = 2$ Stem - Front Face - Transverse Direct	$b_{t-stem} = \frac{15 \text{ N}}{15 \text{ N}}$	24.30 • Vf> O 201.6 190 1 Bars	kN KAY mm mm	$V_f =$ lice Length = lhb > $h_{stem} =$ 500 r	36.8 1077 8db> 3310 nm	kN mm OKAY mm		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length $ _{hb} = 460 \text{ mm}$ Final Foundation Wall Design: $b_{b-stem} = 190 \text{ mm}$ Stem - Front Face - Longitudinal Direc $n = 2$ Stem - Front Face - Transverse Direct $n = 1$	$b_{t-stem} = \frac{15 \text{ M}}{15 \text{ M}}$	201.6 201.6 190 1 Bars): 1 Bars	kN KAY Sp mm mm @ s = @ s =	$V_f =$ lice Length = lhb > h _{stem} = 500 r	36.8 1077 8db> 3310 mm	kN mm OKAY mm		
V_{a1} 0.00 hrv $V_c = 98.5$ kN Stem Design - Developmental Length $ _{hb} = 460$ mm $final Foundation Wall Design:$ $b_{b-stem} = 190$ mmStem - Front Face - Longitudinal Direct $n = 2$ Stem - Front Face - Transverse Direct $n = 1$ Stem - Rear Face - Longitudinal Direct	V_{a2} $V_{c} >$ Check: $8d_b =$ $b_{t-stem} =$ ection:15 Mion (Per Face)15 MCtion:	201.6 201.6 190 1 Bars): 1 Bars	kN KAY mm (@ s = (@ s =	$V_{f} =$ lice Length = lhb > $h_{stem} =$ 500 r 500 r	36.8 1077 8db> 3310 nm	kN mm OKAY mm		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length $\downarrow_{hb} = 460 \text{ mm}$ Final Foundation Wall Design: $b_{b-stem} = 190 \text{ mm}$ Stem - Front Face - Longitudinal Direc $n = 2$ Stem - Front Face - Transverse Direct $n = 1$ Stem - Rear Face - Longitudinal Direc $n = 2$	V_{a2} $V_{c} >$ Check: $8d_b =$ $b_{t-stem} =$ ection:15 Mion (Per Face)15 Mction:25 M	201.6 201.6 190 1 Bars 1 Bars	kN KAY mm mm (@ s = (@ s = (@ s = (@ s =	$V_{f} =$ lice Length = libe > $h_{stem} =$ 500 r 500 r	36.8 1077 8db> 3310 nm	kN mm OKAY mm		
$V_{c} = 98.5 \text{ kN}$ Stem Design - Developmental Length $\downarrow_{hb} = 460 \text{ mm}$ Final Foundation Wall Design: $b_{b-stem} = 190 \text{ mm}$ Stem - Front Face - Longitudinal Direction $n = 2$ Stem - Front Face - Transverse Direction $n = 1$ Stem - Rear Face - Longitudinal Direction $n = 2$ Stem - Rear Face - Longitudinal Direction $n = 2$	V_{a2} $Vc >$ Check: $8d_b =$ $b_{t-stem} =$ ection:15 Mion (Per Face)15 Nction:25 Mon (Per Face):	201.6 201.6 190 1 Bars): 1 Bars 1 Bars	kN KAY mm mm (a) s = (a) s = (a) s =	$V_{f} =$ lice Length = lhb > $h_{stem} =$ 500 r 500 r	36.8 1077 8db> 3310 nm nm	kN mm OKAY mm		

B.8: Strip Footing

Example 2.1 – Design of a Wall Footing

A reinforced concrete wall, 325 mm thick, carries a service (specified) dead load of 80 kN/m and a service live load of 220 kN/m. The foundation depth recommended by the geotechnical engineer is 1.25 m (below finished grade). The geotechnical resistance is 210 kPa at the serviceability limit state and the factored geotechnical resistance is 500 kPa at the ultimate limit state. All resistances are at the foundation depth. The unit weight of the soil is 16 kN/m³. Design a footing for the wall. Use $f'_c = 25$ MPa, $a_g = 20$ mm and $f_v = 400$ MPa.

1. Size of Footing and Factored Pressure

- The allowable soil pressure is the gross pressure at a depth of 1.25 m. Assume the thickness of footing to be 0.3 m. The unit weight of concrete and soil are 24 and 16 kN/m³, respectively (it is assumed that the soil will be backfilled to grade).
- The net soil pressure allowable at a depth 1.25 m is:

$$q_{sa (NET)} = 210 - 0.3 \times 24 - (1.25 - 0.3) \times 16 = 188 \text{ kN/m}^2$$

- Required width of footing (for 1 meter design strip) is:

$$b = \frac{P_{\text{Service}}}{q_{sa(\text{NET})}} = \frac{80 + 220}{188} = 1.595 \text{ mm} \text{ (use 1.60 m)}$$

- The weight of footing and weight of overburden are uniformly distributed loads and are balanced by the uniform soil pressure.
- For 1 meter wide design strip, the factored load, P_f is:

$$P_f = 1.25 \times 80 + 1.5 \times 220 = 430 \text{ kN}$$

The factored soil pressure, p_{sf}, corresponding to this load (per 1 m design strip) is:

$$q_{sf} = \frac{430}{1.6 \times 1} = 269 \text{ kN/m}^2 \text{ (kPa)} = 0.269 \text{ MPa} < q_{su} = 500 \text{ kPa} (::OK)$$

2. Footing depth for shear

 Critical section for shear is at a distance d_v (mm) from the wall face. The factored shear force at that location is:

$$V_{f} = 0.269 \times 1000 \times (637.5 - d_{v}) = 269(638 - d_{v})$$

- According to Clause 11.3.4, the shear resistance of concrete, V_c , is:

$$V_c = \phi_c \,\lambda \,\beta \,\sqrt{f_c' \,b_w \,d_v}$$

where β = 0.21 for footings with an overall thickness not greater than 350 mm.

$$V_{c} = 0.65 \times 1.0 \times 0.21 \times \sqrt{25 \times 1000 \times d_{v}} = 682.5 d_{v}$$

- Equating V_c and V_r :

 $269(638 - d_v) \le 682.5d_v$

- Solving, $d_v = 197 \text{ mm} \Rightarrow d = d_v/0.9 = 200 \text{ mm}$ Using clear cover of 75 mm and assuming 15M bars:

h = 200 + 75 + 16/2 = 282.6 mm, therefore use h = 300 mm (note Clause 15.7 for minimum *d*).

 An overall thickness of 300 mm, with a cover of 75 mm and No. 15 bars will give:

d = 300 - 75 - 16/2 = 217 mm (which is adequate, \therefore O.K.)

3. Design for Moment

- Clause 15.4.3 states the location of the critical sections for the maximum factored moment for a footing based on the type of wall or column. Figure N15.4.3 of the commentary also show the location for the critical sections for moment in footings.
- Based on Clause 15.4.3, and for footings supporting a concrete column, pedestal, or wall (as in the current example), the critical section for flexure is located at the face of the wall.

Maximum moment at wall face is:

 $M_f = 0.269 \times 1000 \times (637.5) \times (637.5/2) = 54.7 \times 10^6 \text{ N} \cdot \text{mm}$

mm ∴O.K

5. Secondary Reinforcement

- The Code does explicitly not specify any temperature and shrinkage reinforcement for footings. Since it is covered by earth, the temperature stresses may not be significant in a footing. In a wall footing which is in the form of a long narrow strip, some secondary bending moment may develop as a result of slight differential settlements along the length of the wall, and it will be good practice to provide some secondary reinforcement in the longitudinal directions.
- Nonetheless, for a reinforced concrete wall footings, some designers and some textbooks recommend the use of A_{s,min} with a maximum spacing of 5*h* or 500 mm (Cl. 7.8.3).
- For the footing in this example:

 $A_{s, \min} = 0.2\% \times 300 \times 1600 = 960 \text{ mm}^2$ Select 5 No. 15M bars $\Rightarrow A_s = 1000 \text{ mm}^2$ spacing, s = 1600/5 = 320 mm (c. to c) $s_{\max} = \min (5h \text{ or } 500 \text{ mm}) = 500 \text{ mm}$ $s < s_{\max} \therefore O.K.$

6. Design the Connection between the Wall and the Footing

- The factored bearing resistance at the bottom of the column is:

Column bearing: $B_r = 0.85 \phi_c f'_c A_1 + \phi_s f_v A_{dowel}$

 $B_r = 0.85 \times 0.65 \times 25 \times 325 \times 1000 \times 10^{-3} = 4489 \text{ kN}$

- Since $B_r > P_f$, therefore no dowel are required to transfer the extra force that can not be carried by the concrete, i.e. $P_f - B_r$. However, the contact surfaces between the column and footing has to contain a minimum area of reinforcement as defined in Cl. 15.9.2.1. The minimum vertical dowels = 0.0015 A_g = 488 mm² (Cl. 14.1.8). Therefore, use a minimum of 3 No. 10M per meter = 600 mm²/m at the interface between the bottom of the wall and the footing.
- In general, it is customary in practice to provide the dowels to match the reinforcement of the wall.

	Concrete Strip Footing Design							
						-		
	Project	: Gibraltar Off	ce Building			Project #: 1	13.001	
Des	signed by	v: AS				Date:	16/03/20	013
Ch	ecked by	r: JG				Description:	GL F	F, 4 to 8
Luitial Lufarena	4.0.00							
Wall Data:	tion:							
$w_1 =$	190	mm	w ₂ =	1000	mm			
$LL_{C} =$	10.96	kN/m	$DL_{c} =$	16.31	kN/m			
			, , , , , , , , , , , , , , , , , , ,					
Geotechnical I	Data:							
Depth =	1200	mm	$\gamma_{soil} =$	18	kN/m^3			
q _{sa} =	150	kPa	$q_{su} =$	300	kPa			
						-		
Basic Data:						$\Phi_s =$	0.85	
Steel Size:	1.	5 M	$k_4 =$	0.8		$\Phi_{\rm c}$ =	0.65	
$d_b =$	16	mm	$\lambda =$	1		$f_c =$	30	MPa
A _b =	200	mm ²	a _g =	20	mm	$f_y =$	400	MPa
Size Footing:						h _f =	300	mm
h _s =	100	mm	$w_{slab} =$	2.4	kPa	$W_{LL(SOG)} =$	2.4	kPa
w _{foot} =	7.2	kPa	w _{soil} =	14.4	kPa	w _{total} =	26.4	kPa
$q_{sa(net)} =$	123.6	kPa	P _{service} =	27.27	kN/m	$A_f =$	0.2	m ²
b =	0.2	m	b ₁ =	400	mm	b ₂ =	1000	mm
New $A_f =$	0.4	m^2	$P_f =$	36.828	kN	$q_{sf} =$	92.1	kPa
Shear Check:					Using 1 m	strip $-> b_w =$	1	m
a _b =	105	mm	$a_b < 3d_b$	_v >β =	= 0.21	$\mathbf{x} = 0$	0.0921	
$V_{f} =$	9.7	$^{-}$ xd _v	$V_c =$	0.7476	d _v	Solve $d_v =$	12	mm
$3d_v =$	35	mm	β =	0.2274		Vc =	0.8095	dv
New $dv =$	11	mm	3dv =	32	mm	$d_v =$	11	mm
d =	12	mm	b' _c =	75	mm	h =	95	mm
h _f =	150	mm	d =	67	mm			

		С	oncr	ete Strip	Foc	ting I	Design			
	D	0.1	1. 0.00	D '11'			D	•	2 001	
D	Project	: Gibra	ltar Offic	ce Building			Pro	$\frac{1}{1}$	13.001 (()02/20	04.2
De	signed by	: AS					D	Date: 1	16/03/20	713
Ch	necked by	: JG					Descr	iption:	GLI	¹ , 4 to 8
Flexure Design	n:									
Flexure Desig	n Longit	udinal	Directio	on:		Using	1m strip>	> b _w =	1	m
s _{max} =	450	mm		$M_{f} =$	0.51	kNm		k _r =	0.1131	
From Table 2	2.1: <i>ϱ</i> =	().36	%	$\varrho_{\rm bal} =$	2.24	%		0	KAY!
$A_{s,min} =$	300	mm^2		$A_s =$	241.2	mm^2		n =	1.5	Bars
$A_s =$	400	mm^{2}		n =	2	Bars		s =	450	mm
Flexure Desig	n Transv	erse D	irection							
s _{max} =	450	mm		$A_{s,min} =$	120	mm^2		n =	0.6	Bars
$A_s =$	200	mm^2		n =	1	Bars		s =	400	mm
Check Develop	pmental	Lengtl	1:							
$ _{d} =$	421	mm		$ _{A} =$	30	mm		Se	e Below	!
				Use	220	mm 90° l	Hook!			
Design Wall-F	ooting J	oint:								
$B_{r,footing} =$	3149.3	kN		$P_f =$	36.828	kN		(OKAY!	
$A_{s,min} =$	285	mm^2		n =	1.425	Bars				
$A_s =$	400	mm^2		n =	2	Bars				
n =	2	Bars		$A_{s,dowels} =$	400	mm ²		s =	500	mm
		•								
Final Strip Foo	oting De	sign:		h =	1000			h =	150	
Longitudinal I	Direction	•		U ₂ –	1000	111111		n _f –	150	11111
	n =		2	15	M Bars		x = 450	t	nm	
				Use	220	mm 90°]	Hook!			
Transverse Di	rection:									
	n =	=	1	15	M Bars	(a) s	s = 400	ť	nm	
Wall-Footing	oint:									
	n =	=	2	15	M Bars	<i>a</i> s	s = 500	1	nm	

Appendix C: Unfactored Load Transfer Sketches

C.1: Unfactored Load Transfer Sketches

Unfactored Load Transfer Sketch

yright DBA Ltd. Thu, Mar 21 2013 02:42 P

Unladored Load Transfer Sketch

21 2013 02:42 PM aming Plan 200313

Unfactored Load Transfer Sketch

Appendix D: Load Transfer Summary Tables

D.1: Unfactored Load Transfer Summary Table

	Column Service Loads									
	Project:Gibraltar Office BuildingProject #:13.001									
Ι	Design Engineer:	AS	5		Date:	16/03	6/2013			
	Checked By:	JC	Ĵ							
	Load from Fi	rst Floor (kN)	Load fro	m Second Fl	oor (kN)	Load from	Roof (kN)			
Column	Dead Load	Live Load	Dead Load	Live Load	Snow Load	Dead Load	Snow Load			
C1	21.8	29.4	42.5	55.6	0.0	16.1	24.9			
C2	58.2	55.9	69.0	68.5	0.0	24.4	50.7			
C3	66.6	44.8	66.6	44.8	0.0	19.6	56.4			
C4	94.7	105.0	104.8	118.5	0.0	26.4	75.9			
C5	68.6	87.3	78.5	100.7	0.0	17.6	50.7			
C6	32.2	43.3	117.1	152.0	0.0	145.7	224.5			
C 7	50.7	68.2	77.6	103.4	0.0	30.3	46.6			
C 8	40.1	49.0	40.1	49.0	0.0	8.8	25.4			
C9	82.2	76.5	168.8	174.0	0.0	0.0	0.0			
C10	145.1	120.6	148.7	133.9	0.0	71.2	135.9			
C11	136.5	91.8	133.4	89.7	0.0	39.2	112.8			
C12	168.8	181.1	175.4	191.0	0.0	47.2	135.6			
C13	123.4	159.1	152.2	183.9	0.0	38.5	110.6			
C14	19.3	12.9	21.8	14.6	0.0	39.0	60.1			
C15	17.6	11.8	72.0	48.4	0.0	128.4	197.8			
C16	9.6	6.5	55.5	37.3	0.0	41.3	84.1			
C17	21.8	14.7	104.3	70.1	0.0	30.7	88.3			
C18	10.1	6.8	82.9	55.8	0.0	24.4	70.2			
C19	0.0	0.0	32.6	0.0	74.3	0.0	0.0			
C20	0.0	0.0	103.8	7.1	192.0	142.3	219.3			
C21	0.0	0.0	53.6	0.0	115.0	0.0	0.0			
C22	0.0	0.0	175.0	0.0	350.4	0.0	0.0			
C23	0.0	0.0	0.0	0.0	0.0	26.1	40.2			

	Column Service Loads									
	Project:	Gibraltar Of	fice Building		Project #:	13	3.001			
De	esign Engineer:	A	\S		Date:	16/0	03/2013			
	Checked By:	J	G							
	Total L	oad on Colun	nn (kN)	Rounded Up	Total Load on	Column (kN)	Total Factored			
Column	Dead Load	Live Load	Snow Load	Dead Load	Live Load	Snow Load	Load (kN)			
C1	80.5	85.0	24.9	81.0	85.0	25.0	267.0			
C2	151.6	124.4	50.7	152.0	125.0	51.0	454.0			
C3	152.8	89.5	56.4	153.0	90.0	57.0	412.0			
C4	225.9	223.5	75.9	226.0	224.0	76.0	733.0			
C5	164.7	188.0	50.7	165.0	189.0	51.0	567.0			
C6	295.0	195.3	224.5	296.0	196.0	225.0	1002.0			
C 7	158.6	171.6	46.6	159.0	172.0	47.0	528.0			
C8	89.0	98.1	25.4	90.0	99.0	26.0	300.0			
С9	250.9	250.5	0.0	251.0	251.0	0.0	691.0			
C10	365.1	254.5	135.9	366.0	255.0	136.0	1044.0			
C11	309.1	181.4	112.8	310.0	182.0	113.0	830.0			
C12	391.4	372.1	135.6	392.0	373.0	136.0	1254.0			
C13	314.0	343.0	110.6	315.0	344.0	111.0	1077.0			
C14	80.1	27.6	60.1	81.0	28.0	61.0	235.0			
C15	217.9	60.2	197.8	218.0	61.0	198.0	661.0			
C16	106.5	43.8	84.1	107.0	44.0	85.0	328.0			
C17	156.8	84.8	88.3	157.0	85.0	89.0	458.0			
C18	117.4	62.5	70.2	118.0	63.0	71.0	349.0			
C19	32.6	0.0	74.3	33.0	0.0	75.0	154.0			
C20	246.2	7.1	411.3	247.0	8.0	412.0	939.0			
C21	53.6	0.0	115.0	54.0	0.0	116.0	242.0			
C22	175.0	0.0	350.4	175.0	0.0	351.0	746.0			
C23	26.1	0.0	40.2	27.0	0.0	41.0	96.0			

D.2: Factored Load Transfer Summary Table

	Combined Column Factored Loads									
	Project: Gibraltar Office Building Project #: 13.001									
	Design Engineer:	AS	Date:	16/03/13						
	Checked By:	JG								
Column	Load from First Floor (kN)	Load from Second Floor (kN)	Load from Roof (kN)	Total Load on Column (kN)						
C1	71.4	136.6	57.5	270						
C2	156.6	191.7	106.6	455						
C3	150.4	150.4	109.0	410						
C4	275.9	308.7	146.8	735						
C5	216.7	249.3	98.1	565						
C6	105.3	374.4	518.8	1000						
C 7	165.6	253.6	107.7	530						
C 8	123.6	123.7	49.2	300						
С9	217.4	472.0	0.0	690						
C10	362.4	386.8	292.9	1042						
C11	308.2	301.2	218.2	830						
C12	482.6	505.8	262.4	1255						
C13	392.9	466.1	214.0	1075						
C14	43.5	49.2	139.0	235						
C15	39.7	162.5	457.2	660						
C16	21.8	125.4	177.8	325						
C17	49.2	235.6	170.8	460						
C18	22.8	187.3	135.8	350						
C19	0.0	152.2	0.0	155						
C20	0.0	428.4	506.9	940						
C21	0.0	239.5	0.0	240						
C22	0.0	744.3	0.0	745						
C23	0.0	0.0	92.9	95						

Appendix E: Structural Drawings

E.1: WS-1.01 General Notes

STRUCTURAL STEEL AND STEEL DECK NOTES:

- 1. CHECK ALL STRUCTURAL, ARCHITECTURAL, MECHANICAL, AND ELECTRICAL DRAWINGS PRIOR TO STARTING ANY CONSTRUCTION.
- 2. ALL STRUCTURAL STEEL SHALL CONFORM TO CSA G40.21 350W, EXCEPT 300W FOR CHANNELS, AND 350 W, CLASS C FOR HSS SECTIONS.
- 3. ALL STRUCTURAL STEEL SHALL BE FABRICATED, ERECTED, AND INSTALLED IN ACCORDANCE WITH CSA S16-1 (LATEST EDITION).
- 4. ALL WELDING SHALL BE CARRIED OUT IN ACCORDANCE WITH CSA W59.1 BY A FABRICATOR FULLY APPROVED UNDER CSA W47.1
- 5. POST-TENSION ALL CROSS BRACING TO FIVE PERCENT OF TENSILE RESISTANCE OF BRACING MEMBER.
- 6. PROVIDE L76X76X6.4 ANGLES AROUND COLUMNS FOR DECK SUPPORT AS REQUIRED.
- 7. ALL BEAM TO COLUMN CONNECTIONS SHALL BE WHICHEVER IS MAXIMUM OF 50 PERCENT OF ULTIMATE SHEAR CAPACITY OF THE BEAM, OR THE SHEAR RESULTING FROM UNIFORM DEAD LOAD AS PER CISC HANDBOOK, BEAM LOAD TABLES (LATEST EDITION). PROVIDE MOMENT CONNECTIONS WHERE SHOWN ON DRAWINGS AS INDICATED BY MC.
- 8. FABRICATOR TO CONFIRM ALL DIMENSIONS AND ELEVATIONS ON SITE BEFORE FABRICATING.
- 9. CROSS BRACING AND MOMENT CONNECTION DETAILS TO BE SHOWN ON ERECTION DRAWINGS SUBMITTED FOR REVIEW THESE ERECTION DRAWINGS ARE TO BE STAMPED BY A PROFESSIONAL ENGINEER LICENSED TO PRACTICE IN NEWFOUNDLAND AND LABRADOR. 10. DO NOT PAINT STEEL ENCASED IN CONCRETE ENCLOSURE.
- 11. ANCHOR BOLTS TO BE MINIMUM A307 GRADE UNLESS OTHERWISE SHOWN ON DRAWINGS.
- 12. ALL BOLTS IN BEARING TYPE JOINTS TO BE SNUG TIGHT. BOLTS IN SLIP CRITICAL JOINTS TO BE TENSIONED TO VALUE GIVEN IN TABLE 7 OF CSA-16.1 FOR THE GIVEN BOLT SIZE
- 13. ALL BOLTS TO BE ASTM A325 UNLESS OTHERWISE NOTED. JOINTS TO BE BEARING TYPE EXCEPT WIND BRACE AND MOMENT CONNECTION JOINTS WHICH ARE TO BE SLIP CRITICAL TYPE.
- 14. AT SLIP JOINTS, PLACE BOLTS IN CENTER OF HOLE. HAND TIGHTEN AND TACK WELD NUT TO BOLT.
- 15. OPEN WEB STEEL JOISTS SHALL HAVE 100 mm SEAT SHOES SECURED WITH 6 mm FILLET WELDS, MINIMUM 90 mm LONG UNLESS OTHERWISE NOTED
- 16. INSTALL JOIST IN ACCORDANCE WITH CSA S-16.1. BRIDGING LINES AT PERIMETER WALL SHALL BE CROSSED. BRIDGING LINES SHOWN ARE A MINIMUM REQUIREMENT.
- 17. OPEN WEB STEEL JOISTS SIZE LIMITS MINIMUM FLAT WIDTH OF TOP CHORD SURFACE WHERE WELDING CONTACT WILL BE MADE SHALL BE 38 mm, TOP CHORD SURFACE WHERE WELDING CONTACT WILL BE MADE SHALL BE 2.5 TIMES THE AGGREGATE OF THE STEEL DECK TO BE WELDED
- 18. UNLESS OTHERWISE NOTED, FLOOR DECKING SHALL BE 90 mm X 38 mm COMPOSITE FLOOR DECK. PROVIDE MINIMUM THREE SPAN CONDITION EXCEPT WHERE RESTRICTED BY FRAMING.PROVIDE SHEET METAL CLOSURE ANGLE ON FLOOR DECK AT PERIMETER AND AROUND ALL OPENINGS.
- 19. UNLESS OTHERWISE NOTED, ROOF DECKING SHALL BE MINIMUM 76 mm X 38 mm DECK. PROVIDE MINIMUM THREE SPAN CONDITION EXCEPT WHERE RESTRICTED BY FRAMING.
- 20. ALL ROOF DECK TO BE WELDED TO SUPPORTS WITH A 19 mm DIAMETER WELD AT 250 O/C MAXIMUM.
- 21. BUTTON PUNCH SIDELAPS OF ALL DECK AT 600 O/C MAXIMUM.
- 22. WELDING QUALIFICATIONS FABRICATION AND ERECTION COMPANIES MUST BE CERTIFIED BY CANADIAN WELDING BUREAU (CWB) UNDER CSA W47.1, CERTIFICATION OF COMPANIES FOR FUSION WELDING STEEL STRUCTURES. WELDING OPERATORS MUST BE QUALIFIED BY CWB FOR STRUCTURAL STEEL AND DECK WELDING
- 23. TOUCH UP WHEN STEEL DECK IS WELDED IN PLACE, ALL TOPSIDE AREAS WHERE THE METALLIC COATING HAS BEEN DESTROYED SHALL BE COVERED BY SUITABLE PRIMER.
- 24. MINIMUM BEARING OF DECK IS 50 mm.
- 25.FOR SIZE AND LOCATION OF MECHANICAL AND ELECTRICAL EQUIPMENT AND OPENINGS, SEE MECHANICAL AND ELECTRICAL DRAWINGS. VERIFY SIZE AND LOCATION WITH MECHANICAL AND ELECTRICAL SHOP DRAWINGS.
- 26. OPENINGS IN STEEL ROOF DECK:
- A. LESS THAN 150 mm, NO REINFORCING REQUIRED.
- B. 150 mm TO 300 mm ACROSS THE FLUTES, PROVIDE A L51X51X4.8 ANGLE TO FRAME ANGLE TO FRAME ACROSS EACH SIDE OF OPENING IN A DIRECTION PERPENDICULAR TO THE FLUTES. WELD OR SCREW ANGLE TO AT LEAST TWO FLUTES ON EACH SIDE OF THE OPENING. C OPENING WITH ANY ONE DIMENSION GREATER THAN 300 mm REINFORCE AS PER DETAIL SHOWN ON DRAWING
- 27. PREPARE SURFACES AND PRIME PAINT STEEL WITH ONE COAT AS PER CISC/CPMA 1-73A UNLESS OTHERWISE NOTED.

STRUCTURAL WOOD AND WOOD DECK NOTES:

- 1. WOOD DECKING AND GLULAM BEAMS TO BE DESIGNED IN ACCORDANCE WITH CAN3-086 FOR THE LOADS AS INDICATED ON THE DRAWINGS.
- 2. WOOD DECKING TO BE 64 mm DFL NO. 1 GRADE UNLESS NOTED OTHERWISE.
- 3. GLULAM BEAMS TO BE 175x132 DFL NO. 1 GRADE UNLESS NOTED OTHERWISE.
- 4. WOOD STUDS TO BE SPF NO. 1/2 GRADE OR BETTER.
- 5. SUBMIT SHOP DRAWINGS FOR REVIEW.
- 6. PLYWOOD AND DECKING NAILING SCHEDULE
- a. ROOF SHEATHING
- i. 3-76 mm NAILS PER BOARD AT END SUPPORTS
- II. 2-76 mm NAILS PER BOARD AT INTERMEDIATE SUPPORTS
- b. WALL SHEATHING
- i. 64 mm NAILS @ 150 O.C. AT PLYWOOD EDGES.
- ii. 64 mm NAILS @ 300 O.C. AT INTERIOR OF SHEET.
- 7. UNLESS OTHERWISE NOTED GLULAM BEAMS TO HAVE MINIMUM 75 MM BEARING.
- 8. UNLESS OTHERWISE NOTED EXTERIOR WALL SHEATHING TO BE 12.7 mm PLYWOOD AND ROOF SHEATHING TO BE 16 mm T&G PLYWOOD
- 9. DESIGN STEEL BEAM SHOE SUCH THAT JOIST REACTION IS TRANSFERRED AT CENTERLINE OF BEAM WEB, MAX. ECCENTRICITY IS TO BE 12 mm TO BEAM WEB.
- 10. WHEN CONNECTING GLULAM BEAMS TO STEEL BEAMS, PROVIDE WOOD BLOCKING AS REQUIRED FOR STABILITY.

CONCRETE AND FOUNDATION GENERAL NOTES:

1. CONCRETE REQUIREMENTS

LOCATION	STRENGTH	CLASS	SLUMP	AIR CONTENT	W/C RATIO
WALL/PIERS	25 MPa	F2	75 mm	4 TO 10%	0.55
FOOTINGS	25 MPa	F2	100 mm	4 TO 10%	0.55
SLAB-ON-DECK	25 MPa	N	75 mm	0%	FOR DESIGN

- 2. CONCRETE COVER TO REINFORCING:
- A. FOOTINGS 75 mm
- B. PIERS 50 mm
- C. WALLS IN CONTACT WITH SOILS 50 mm
- 3. PROVIDE TWO 15M CONTINUOUS AROUND ALL OPENING IN CONCRETE WALLS.EXTEND BARS 600 BEYOND OPENING.
- 4. NO FOOTING SHALL BE POURED WITHOUT PRIOR APPROVAL OF THE ENGINEER.
- 5. FORMWORK MUST NOT BE REMOVED UNTIL CONCRETE HAS ATTAINED SUFFICIENT STRENGTH TO SUSTAIN ALL LOADINGS.
- 6 FOR OPENINGS IN WALLS SEE MECHANICAL AND ARCHITECTURAL DRAWINGS
- 7. ALL REINFORCING SHALL HAVE MINIMUM YIELD OF 400 MPa.
- 8. ALL REINFORCING STEEL SHALL BE DETAILED, FABRICATED, PLACED, AND SUPPORTED IN ACCORDANCE WITH ACI 315 (LATEST EDITION)
- 9. ALL REINFORCING STEEL SHALL BE LAPPED A MINIMUM OF 24 BAR DIAMETERS, 300 mm UNLESS OTHERWISE NOTED.
- 10. PROVIDE CORNER BARS TO MATCH HORIZONTAL REINFORCING BARS.
- 11. LAP SPLICE ALL FOOTING DOWELS 750 mm OR 36 DIAMETERS, WHICHEVER IS GREATER TO VERTICALS IN PIERS, UNLESS OTHERWISE NOTED.
- 12. CHAMFER ALL EXPOSED CORNERS OF COLUMNS, BEAMS AND WALLS 20 mm.
- 13. PROVIDE 25 mm NON-SHRINK GROUT UNDER ALL BASE PLATES UNLESS OTHERWISE NOTED.
- 14. CENTRE FOOTINGS UNDER CENTRE OF COLUMNS UNLESS OTHERWISE NOTED.
- 15. BACKFILLING AGAINST WALLS ON ONE SIDE ONLY SHALL NOT BE STARTED UNTIL FLOOR SLABS ARE IN PLACE TO PROVIDE BRACING UNLESS APPROVED BY AN ENGINEER.
- 16. ALL FOOTINGS ARE TO REST ON UNDISTURBED SOIL HAVING MINIMUM BEARING CAPACITY OF 150 kPa, UNLESS OTHERWISE NOTED.
- 17. FOR SUBSURFACE INVESTIGATION AND RECOMMENDATIONS, SEE SOILS REPORT BY SOILS CONSULTANT.
- 18. IF FOOTINGS REST ON COMPACTED BACKFILL, THEN ALL FOOTING ELEVATION ARE TO BE CONFIRMED BY A GEOTECHNICAL ENGINEER BEFORE POURING.
- 19. DO NOT PLACE FOOTINGS ON FROZEN GROUND.
- 20. THE UNDERSIDE OF ALL EXTERIOR WALL AND COLUMN FOOTINGS TO BE A MINIMUM OF 1200 mm BELOW THE FINISHED EXTERIOR GRADE, UNLESS OTHERWISE NOTED.
- 21. THE UNDERSIDE OF INTERIOR WALL AND COLUMN FOOTINGS TO BE A MINIMUM OF 750 mm BELOW FLOOR SLAB ELEVATION. UNLESS OTHERWISE NOTED.
- 22. BACKFILL MATERIALS
- A. TYPE 1 AND TYPE 2 FILL: CRUSHED, PIT RUN OR SCREENED STONE, GRAVEL OR SAND. GRADATION TO BE WITHIN LIMITS SPECIFIED WHEN TESTED TO ASTM C136 AND ASTM C117. SIEVE SIZES TO CAN/CGSB-8.1.
- B. TYPE 3 FILL: WELL GRADED GRANULAR MATERIAL FROM EXCAVATION OR OTHER SOURCES OR WELL GRADED OR BLASTED ROCKFILL. MAXIMUM PARTICLE SIZE FOR STRUCTURAL FILL TO BE 200 mm AND FINES CONTENT SHOULD NOT EXCEED 8 PERCENT MATERIAL TO BE FREE FROM CINDERS, ASHED, SODAS, REFUSE, OR DELETERIOUS MATERIALS.
- 23. FILL TYPE AND COMPACTION
- USE FILL OF TYPES AS INDICATED OR SPECIFIED BELOW. COMPACTION DENSITIES ARE PERCENTAGES OF MAXIMUM DENSITIES OBTAINED FROM ASTM D698
- A. EXTERIOR SIDE OF PERIMETER WALLS: USE TYPE 3 FILL TO SUBGRADE LEVEL. COMPACT TO 95 PERCENT.

	TYPE 1	TYPE 2
SIEVE DESIGNATION	PERCENTAGE PASSING	PERCENTAGE PASSING
50.80 mm	-	100
25.40 mm	-	50 TO 100
19.00 mm	100	-
15.90 mm	-	-
9.500 mm	50 TO 80	-
4.750 mm	35 TO 60	20 TO 55
1.200 mm	15 TO 35	10 TO 35
0.300 mm	5 TO 20	5 TO 20
0.075 mm	2 TO 8	2 TO 8

- B. INTERIOR SIDE OF PERIMETER WALLS: USE TYPE 2 FILL TO UNDERSIDE OF BASE COURSE FOR 500 mm FROM WALL AND COMPACT TO 98 PERCENT
- C. RETAINING WALLS: USE TYPE 2 FILL TO SUBGRADE LEVEL ON HIGH SIDE FOR MINIMUM 500 mm FROM WALL AND COMPACT TO 95 PERCENT. FOR REMAINING PORTION USE, TYPE 3 FILL COMPACTED TO 95 PERCENT.
- 24. ALL TEST PITS INSIDE THE PERIMETER OF THE BUILDING TO BE EXCAVATED TO THE FULL DEPTH OF THE TEST PIT AND BACKFILLED WITH SUITABLE STRUCTURAL FILL, PLACED AND COMPACTED TO 98 PERCENT STANDARD PROCTOR DENSITY.

1. Do not scale from drawin 2. Contractor must verify all dimensions on site before proceeding wi

3. This drawing is not to be used for construction unless it is issued for construction, stamped and signed by the Project Engineer

ISSUED FOR PERMIT

ISSUED FOR PERMIT 03/04/13 DESCRIPTION DATE COMPANY STAME ENGINEERS STAMF DBA CONSULTING ENGINEERS LTD. PREMIER ENGINEERING CONSULTANTS PROJEC[®] GIBRALTOR OFFICE BUILDING **GENERAL NOTES** WN BY DESIGNED BY HECKED BY SI JG AS PROVED BY PROJECT NO 13.001 MARCH 2013

RAWING NO

WS-1.01

N/A

1 OF 1

E.2: WS-2.01 to WS-2.04 Framing Plans

Apr 2 2013 08:51 PM ning Plan 270313.dwg

Ν

pyright . Tue, Apr 2 2013 08:53 PM (Drawings\Framing Plan 270313.dwg

E.3: WS-5.01 to WS-5.07 Structural Elevations and Cross Sections

M

. Apr 2 2013 09:02 F vation 270313.dwg

Tue,

SCALE: 1:125

 1
 BUILDING CROSS-SECTION

SCALE: 1:100

NOTES: 1. Do not scal 2. Contractor this work. 3. This drawin construction,	e from drawing must verfly all dimer ig is not to be used f stamped and signed	nsions on site	before pro	cceeding with t is issued for r.
ISS	UED F	or p	ER	MIT
1	ISSUED FOR PERMIT			03/04/13
No.	DESCRIPTI	ON		DATE
CLIENT	DB	A		
	ENGINEE	RSLT).	
Premie	R ENGINE	ERING	CONS	ULTANTS
PROJECT		-		
GIB	RALTOR OF	FICE BU	JILDIN	IG
DRAWING				
C	STRUC ROSS-S	TUR SECT	AL '101	N
DRAWN BY	DESIGNED BY		CHECKED) BY
			AS	
	13.001		MARCI	H 2013
SCALE	SHEET		DRAWING	NO.
1:100	7 OF 7		ws	5–5.07

E.4: WS-6.01 to WS-6.03 Structural Details

vright . Tue, Apr 2 2013 09:56 PM

rright . Tue, Apr 2 2013 10:02 Prawinas/Details.dwa Appendix F: Quantity Takeoff

Premier Engineering Consultants Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John's, NL, A1B 3X5 PremierEngineering@live.ca

F.1: Quantity Takeoff

Quantity Takeoff Report

Project: Gibraltar Office Building Design Engineer: AH/AS			Project #:	13.001		
		AH/AS		Date:	27/03,	/13
	Checked By:	JG/SI	_			
SECTION	D	ESCRIPTION	<u>UNIT</u>	QUANTITY	UNIT PRICE	TOTAL
CONCRET	ΓF					
CONCRET						
<u>1001</u>	Spread Footings					
	F1: 1200x1200x300		m^3	1.73	\$600	\$1,036.80
	F2: 1500x1500x350		m ³	7.09	\$600	\$4,252.50
	F3: 2000x2000x400		m ³	19.20	\$600	\$11,520.00
	F4: 2200x2200x450		m^3	8.71	\$600	\$5,227.20
	5% Wastage		m ³	1.84	\$600	\$1,101.83
<u>1002</u>	Pedestals					
	P1: 200x200x1000		m ³	0.16	\$700	\$112.00
	P2: 250x250x1000		m ³	0.56	\$700	\$393.75
	P3: 300x300x1000		m^3	1.08	\$700	\$756.00
	P4: 350x350x1000		m^3	0.49	\$700	\$343.00
	5% Wastage		m ³	0.11	\$ 700	\$80.24
1003	Foundation Walls					
	W1: 190x15,400x155	0	m ³	0.2945	\$700	\$206.15
	W2: 190x6400x2050		m ³	0.3895	\$700	\$272.65
	W3: 190x4644x1550		m ³	0.2945	\$700	\$206.15
	W4: 190x14,227x125	0	m ³	0.2375	\$700	\$166.25
	W5: 190x22,057x391	0	m^3	0.7429	\$700	\$520.03
	W6: 190x6036x2610		m ³	0.4959	\$700	\$347.13
	W7: 190x19,310x231	0	m ³	0.4389	\$700	\$307.23
	W8: 190x3656x2810		m ³	0.5339	\$700	\$373.73
	W9: 190x30,310x381	0	m ³	0.7239	\$700	\$506.73
	5% Wastage		m ³	0.21	\$ 700	\$145.30
<u>1004</u>	Strip Footings					
	S1: 400x125,240x150)	m ³	0.06	\$600	\$36.00
	5% Wastage		m ³	0.003	\$ 600	\$1.80
<u>1005</u>	Slab-on-Grade					
	Basement Slab: 100 r	nm	m ³	35.52	\$520	\$18,468.89
	Storage Area Slab: 10	00 mm	m ³	17.25	\$520	\$8,969.38
	5% Wastage		m ³	2.64	\$520	\$1,371.91
1006	Control Joints			00.10		0007 75
	East-West Gridlines	2, 4, 5, 6, and /	m	80.68	\$10 \$10	\$806.75 \$762.32
	5% Wastage	es D.1, C, and D	m	7.85	\$10 \$10	p/02.32 \$78.45
	J70 Wastage		111	1.05	ψIU	ψ/0.45

Concrete Sub-Total \$58,370.18

Quantity Takeoff Report

	Project: Gibraltar Office Building			Project #:	13.001	
Design Engineer: AH/AS			Date:	27/03/13		
	Checked By:	JG/SI				
SECTION		DESCRIPTION	<u>UNIT</u>	QUANTITY	UNIT PRICE	TOTAL
STEEL						
2001	Steel Beams					
	W200x19		Tonne	1.33	\$4,700	\$6,242.78
	W310x21		Tonne	2.25	\$4,700	\$10,576.00
	W310x24		Tonne	0.15	\$4,700	\$718.54
	W310x28		Tonne	0.10	\$4,700	\$460.86
	W360x33		Tonne	2.41	\$4,700	\$11,311.29
	W360x45		Tonne	0.23	\$4,700	\$1,083.94
	W410x39		Tonne	2.11	\$4,700	\$9,917.08
	W410x46		Tonne	1.19	\$4,700	\$5,600.44
	W460x52		Tonne	0.99	\$4,700	\$4,657.29
	W460x60		Tonne	1.40	\$4,700	\$6,596.26
	W530x66		Tonne	1.29	\$4,700	\$6,081.78
	W530x74		Tonne	0.38	\$4,700	\$1,782.48
	W610x82		Tonne	1.55	\$4,700	\$7,285.22
	W760x134		Tonne	0.42	\$4,700	\$1,974.97
	W760x161		Tonne	1.99	\$4,700	\$9,352.06
	5% Wastage		Tonne	0.89	\$4,700	\$4,182.05
2002	Steel Columns					
	HSS 127x127x4.8		Tonne	0.72	\$4,700	\$3,387.07
	HSS 152x152x4.8		Tonne	2.14	\$4,700	\$10,078.65
	HSS 178x178x6.4		Tonne	2.93	\$4,700	\$13,789.12
	HSS 203x203x8.0		Tonne	2.09	\$4,700	\$9,805.14
	5% Wastage		Tonne	0.39	\$4,700	\$1,853.00
<u>2003</u>	Steel Lateral Braci	ng				
	X Bracing: HSS 1	27x127x4.8	Tonne	1.70	\$4,700	\$8,013.05
	X Bracing: HSS 1.	52x152x4.8	Tonne	0.66	\$4,700	\$3,098.86
	X Bracing: HSS 1	78x178x6.4	Tonne	0.52	\$4,700	\$2,449.52
	5% Wastage		Tonne	0.14	\$4,700	\$678.07
<u>2004</u>	Steel Channels (C	antilever Windows)	17		A I B O O	0 / / / T / D
	C150x12		Tonne	0.88	\$4,700	\$4,115.62
	5% Wastage		Tonne	0.04	\$4, 700	\$205.78
<u>2005</u>	Open Web Steel J	<u>oists</u>	T	0.05	* 1 = 00	* 2 (2 5 2
	3 m Span, 250 mm	n Depth	Tonne	0.05	\$4,700 \$4,700	\$242.52
	4 m Span, 400 mn	n Depth	Tonne	0.17	\$4,700	\$782.08
	/ m Span, 650 mm	n Depth	Tonne	0.80	\$4,700	\$3,/53.89
	8 m Span, 650 mn	n Depth	Tonne	1.00	\$4,700	\$4,/11.28
	9 m Span, 650 mn	n Depth	Tonne	3.15	\$4,700	\$14,/88.08
	9 m Span, 750 mm	n Deptn	Tonne	5.94	\$4,700	\$27,901.08
	10 m Span, 750 m 5% Wastage	m Depth	Tonne	2.39 0.67	\$4,700 \$4,700	\$11,223.60 \$3,170.13
2006	Steel Column Bas	e Plates				
	PL 160x160x10	<u></u>	Tonne	0.0001	\$4,700	\$0.38
	PL 210x210x10		Tonne	0.0003	\$4,700	\$1.46
	PL 270x270x20		Tonne	0.0014	\$4,700	\$6.46
	PL 310x310x20		Tonne	0.0006	\$4,700	\$2.84
	5% Wastage		Tonne	0.0001	\$4,700	\$0.56

Steel Sub-Total \$211,881.26

Quantity Takeoff Report

	Project:	Gibraltar Office Building		Project #:	13.00)1	
	Design Engineer: AH/AS		-	Date:	27/03/	/13	
	Checked By:	JG/SI	-				
SECTION	<u>]</u>	DESCRIPTION	<u>UNIT</u>	QUANTITY	UNIT PRICE	<u>TOTAL</u>	
WOOD							
<u>3001</u>	Wood Decking*						
	64 mm Depth Co	mmerical Grade Douglas Fir Larch	m^2	214.75	\$57	\$12,221.89	
	5% Wastage		m ²	10.74	\$57	\$611.09	
<u>3002</u>	CLT Panels**						
	Double Span: 32	mm Depth SLT	m ²	214.75	\$161	\$34,656.50	
	5% Wastage		m ²	10.74	\$161	\$1,732.82	
<u>3003</u>	Joists (Glulam Be	ams)					
	8.9 m Span: 175x5	532 Douglas Fir Larch*	m	154	\$26	\$4,037.86	
	5% Wastage*		m	7.69	\$26	\$201.89	
	8.9 m Span: 215x5	532 Douglas Fir Larch**	m	120	\$26	\$3,140.56	
	5% Wastage**		m	5.98	\$26	\$157.03	
			We	ood Decking Op	tion* Sub-Total	\$17,072.74	
			(CLT Panels Opt	ion** Sub-Total	\$39,686.91	
		Since Wood D	ecking Opti	on Is Cheaper, V	Wood Sub-Total	\$17,072.74	
DECKING							
4001	Composite Decki	ng					
	First Floor: Triple	Span - 37.4 mm Depth	m ²	328.95	\$35	\$11,513.20	
	First Floor: Triple	Span - 90 mm Slab	m ²	328.95	\$45	\$14,802.68	
	Second Floor: Tri	ple Span - 37.4 mm Depth	m^2	512.02	\$35	\$17,920.58	
	Second Floor: Tri	ple Span - 90 mm Slab	m^2	512.02	\$45	\$23,040.75	
	5% Wastage (37.4	mm Depth)	m^2	42.05	\$35	\$1.471.69	
	5% Wastage (90 n	nm Slab)	m ²	42.05	\$45	\$1,892.17	
4002	Steel Decking						
	Roof: Triple Span	: 37.4 mm Depth	m^2	320.59	\$110	\$35,264.43	
	5% Wastage	·r ·	m ²	16.03	\$110	\$1,763.22	
				Dee	cking Sub-Total	\$107,668.73	
				Sub-Total		\$394,992.91	
			I	H.S.T. 13% of A	nount	\$51,349.08	
				Grand Tota	1	\$446,341.99	